Spin Glass Energy Minimization through Learning and Evolution

被引:0
作者
V. G. Red’ko
机构
[1] Scientific Research Institute for System Analysis,
[2] Russian Academy of Sciences,undefined
来源
Optical Memory and Neural Networks | 2020年 / 29卷
关键词
spin glass energy minimization; autonomous agents; learning and evolution of agents; genotypes; phenotypes;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:187 / 197
页数:10
相关论文
共 21 条
[1]  
Sherrington D.(1975)Solvable model of spin-glass Phys. Rev. Lett 35 1792-1796
[2]  
Kirkpatrick S.(1978)Infinite range model of spin-glass Phys. Rev. B 17 4384-4403
[3]  
Kirkpatrick S.(2017)Mechanisms of interaction between learning and evolution Biol. Inspired Cognit. Arch 22 95-103
[4]  
Sherrington D.(1980)Analytic theory of the ground state properties of a spin glass. I. Ising spin glass J. Phys. F: Met. Phys 10 2769-2778
[5]  
Red’ko V.G.(1982)Low-temperature behavior of the infinite-range Ising spin-glass: exact statistical mechanics for small samples Phys. Rev. B 25 440-451
[6]  
Tanaka F.(1987)How learning can guide evolution Complex Syst 1 495-502
[7]  
Edwards S.F.(2016)The spectra of local minima in spin-glass models Opt. Mem. Neural Networks 25 1-15
[8]  
Young A.P.(2015)Generalized approach to description of energy distribution of spin system Opt. Mem. Neural Networks 24 165-185
[9]  
Kirkpatrick S.(2015)Matrix transformation method in quadratic binary optimization Opt. Mem. Neural Networks 24 67-81
[10]  
Hinton G.E.(2014)Attraction area of minima in quadratic binary optimization Opt. Mem. Neural Networks 23 84-88