A local search approximation algorithm for a squared metric k-facility location problem

被引:0
作者
Dongmei Zhang
Dachuan Xu
Yishui Wang
Peng Zhang
Zhenning Zhang
机构
[1] Shandong Jianzhu University,School of Computer Science and Technology
[2] Beijing University of Technology,Beijing Institute for Scientific and Engineering Computing
[3] Beijing University of Technology,Department of Information and Operations Research, College of Applied Sciences
[4] Shandong University,School of Computer Science and Technology
来源
Journal of Combinatorial Optimization | 2018年 / 35卷
关键词
Approximation algorithm; Facility location; Local search;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a squared metric k-facility location problem (SM-k-FLP) which is a generalization of the squared metric facility location problem and k-facility location problem (k-FLP). In the SM-k-FLP, we are given a client set C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} and a facility set F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F} $$\end{document} from a metric space, a facility opening cost fi≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_i \ge 0$$\end{document} for each i∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ i \in \mathcal {F}$$\end{document}, and an integer k. The goal is to open a facility subset F⊆F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F \subseteq \mathcal {F}$$\end{document} with |F|≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |F| \le k$$\end{document} and to connect each client to the nearest open facility such that the total cost (including facility opening cost and the sum of squares of distances) is minimized. Using local search and scaling techniques, we offer a constant approximation algorithm for the SM-k-FLP.
引用
收藏
页码:1168 / 1184
页数:16
相关论文
共 50 条
  • [11] An approximation algorithm for k-facility location problem with linear penalties using local search scheme
    Wang, Yishui
    Xu, Dachuan
    Du, Donglei
    Wu, Chenchen
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) : 264 - 279
  • [12] An approximation algorithm for soft capacitated k-facility location problem
    Jiang, Yanjun
    Xu, Dachuan
    Du, Donglei
    Wu, Chenchen
    Zhang, Dongmei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 493 - 511
  • [13] An approximation algorithm for soft capacitated k-facility location problem
    Yanjun Jiang
    Dachuan Xu
    Donglei Du
    Chenchen Wu
    Dongmei Zhang
    Journal of Combinatorial Optimization, 2018, 35 : 493 - 511
  • [14] An approximation algorithm for k-level squared metric facility location problem with outliers
    Zhang, Li
    Yuan, Jing
    Li, Qiaoliang
    OPTIMIZATION LETTERS, 2025, 19 (01) : 139 - 149
  • [15] Approximation Schemes for k-Facility Location
    Kong, Xiangyan
    Zhang, Zhen
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 488 - 495
  • [16] Approximation Algorithm for the Squared Metric Soft Capacitated Facility Location Problem
    Han, Lu
    Xu, Dachuan
    Xu, Yicheng
    Zhang, Dongmei
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, 2019, 11917 : 72 - 73
  • [17] Approximation algorithm for squared metric facility location problem with nonuniform capacities
    Xu, Yicheng
    Xu, Dachuan
    Du, Donglei
    Zhang, Dongmei
    DISCRETE APPLIED MATHEMATICS, 2019, 264 (208-217) : 208 - 217
  • [18] Approximation algorithm for squared metric two-stage stochastic facility location problem
    Jin Zhang
    Min Li
    Yishui Wang
    Chenchen Wu
    Dachuan Xu
    Journal of Combinatorial Optimization, 2019, 38 : 618 - 634
  • [19] Approximation algorithm for squared metric two-stage stochastic facility location problem
    Zhang, Jin
    Li, Min
    Wang, Yishui
    Wu, Chenchen
    Xu, Dachuan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 618 - 634
  • [20] Local Search Algorithms for k-Median and k-Facility Location Problems with Linear Penalties
    Wang, Yishui
    Xu, Dachuan
    Du, Donglei
    Wu, Chenchen
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015), 2015, 9486 : 60 - 71