Exp-function method for solving Kuramoto-Sivashinsky and Boussinesq equations

被引:27
作者
Noor M.A. [1 ]
Mohyud-Din S.T. [1 ]
Waheed A. [1 ]
机构
[1] Department of Mathematics, COMSATS Institute of Information Technology, Islamabad
关键词
Boussinesq equation; Kuramoto-Sivashinsky equation; Nonlinear partial differential equations;
D O I
10.1007/s12190-008-0083-y
中图分类号
学科分类号
摘要
In this paper, we use the Exp-function method to construct the generalized solitary and periodic solution of the Kuramoto-Sivashinsky and Boussinesq equations. These equations play very important role in mathematical physics and engineering sciences. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The results show the reliability and efficiency of the proposed method.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 50 条
[41]   Error estimates of nonstandard finite difference schemes for generalized Cahn-Hilliard and Kuramoto-Sivashinsky equations [J].
Chow, SM ;
Chung, SK ;
Lee, YJ .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (06) :1121-1136
[42]   Well- and ill-posedness for a class of the 3D-generalized Kuramoto-Sivashinsky equations [J].
Au, Vo Van .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06)
[43]   Lie symmetry analysis, multiple exp-function method and conservation laws for the (2+1)-dimensional Boussinesq equation [J].
Mbusi, S. O. ;
Adem, A. R. ;
Muatjetjeja, B. .
OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (04)
[44]   Lie symmetry analysis, multiple exp-function method and conservation laws for the (2+1)-dimensional Boussinesq equation [J].
S. O. Mbusi ;
A. R. Adem ;
B. Muatjetjeja .
Optical and Quantum Electronics, 56
[45]   Second-order splitting combined with orthogonal cubic spline collocation method for the Kuramoto-Sivashinsky equation [J].
Manickam, AV ;
Moudgalya, KM ;
Pani, AK .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (06) :5-25
[46]   An Efficient Off-Step Exponential Spline Technique to Solve Kuramoto-Sivashinsky and Extended Fisher-Kolmogorov Equations [J].
Sharma, Naina ;
Sharma, Sachin .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2025, 22 (05)
[47]   A fourth-order H1-Galerkin mixed finite element method for Kuramoto-Sivashinsky equation [J].
Doss, L. Jones Tarcius ;
Nandini, A. P. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (02) :445-477
[48]   Kuramoto-Sivashinsky equation: Numerical solution using two quintic B-splines and differential quadrature method [J].
Kaur, Navneet ;
Joshi, Varun .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 220 :105-127
[49]   A new algorithm for automatic computation of solitary wave solutions to nonlinear partial differential equations based on the Exp-function method [J].
Zhao, Lei ;
Huang, Dingjiang ;
Zhou, Shuigeng .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1890-1896
[50]   An efficient off-step spline algorithm for wave simulation of nonlinear Kuramoto-Sivashinsky and Korteweg-de Vries equations [J].
Sharma, Naina ;
Sharma, Sachin .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025, 102 (02) :313-334