Exp-function method for solving Kuramoto-Sivashinsky and Boussinesq equations

被引:27
作者
Noor M.A. [1 ]
Mohyud-Din S.T. [1 ]
Waheed A. [1 ]
机构
[1] Department of Mathematics, COMSATS Institute of Information Technology, Islamabad
关键词
Boussinesq equation; Kuramoto-Sivashinsky equation; Nonlinear partial differential equations;
D O I
10.1007/s12190-008-0083-y
中图分类号
学科分类号
摘要
In this paper, we use the Exp-function method to construct the generalized solitary and periodic solution of the Kuramoto-Sivashinsky and Boussinesq equations. These equations play very important role in mathematical physics and engineering sciences. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The results show the reliability and efficiency of the proposed method.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 50 条
[21]   Efficient Lattice Boltzmann Method for Specialized Kuramoto-Sivashinsky Equation [J].
Cai Li ;
Xie Wenxian .
2013 IEEE INTERNATIONAL CONFERENCE OF IEEE REGION 10 (TENCON), 2013,
[22]   Solving 2D damped Kuramoto-Sivashinsky with multiple relaxation time lattice Boltzmann method [J].
MohammadiArani, Reza ;
Dehghan, Mehdi ;
Abbaszadeh, Mostafa .
APPLIED NUMERICAL MATHEMATICS, 2024, 196 :83-103
[23]   Finite Difference Method for (2+1)-Kuramoto-Sivashinsky Equation [J].
Bezia, Abdelhamid ;
Mabrouk, Anouar Ben .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 31 (03) :193-213
[24]   A finite pointset method for Kuramoto-Sivashinsky equation based on mixed formulation [J].
Doss, L. Jones Tarcius ;
Kousalya, N. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) :765-778
[25]   Numerical Method Based on the Lattice Boltzmann Model for the Kuramoto-Sivashinsky Equation [J].
Ye, Lina ;
Yan, Guangwu ;
Li, Tingting .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 49 (02) :195-210
[26]   Numerical Method Based on the Lattice Boltzmann Model for the Kuramoto-Sivashinsky Equation [J].
Lina Ye ;
Guangwu Yan ;
Tingting Li .
Journal of Scientific Computing, 2011, 49 :195-210
[27]   THE LARGE TIME CONVERGENCE OF SPECTRAL METHOD FOR GENERALIZED KURAMOTO-SIVASHINSKY EQUATION (Ⅱ) [J].
Xinming Xiang Shanghai Normal University Shanghai China .
Journal of Computational Mathematics, 1998, (03) :203-212
[28]   Analytical solution for the generalized Kuramoto-Sivashinsky equation by the differential transform method [J].
Hesam, S. ;
Nazemi, A. R. ;
Haghbin, A. .
SCIENTIA IRANICA, 2013, 20 (06) :1805-1811
[29]   Exact Solutions for Nonlinear Partial Differential Equations via Exp-Function Method [J].
Aminikhah, Hossein ;
Moosaei, Hossein ;
Hajipour, Mojtaba .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (06) :1427-1433
[30]   L2-stability analysis of novel ETD scheme for Kuramoto-Sivashinsky equations [J].
Vaissmoradi, N. ;
Malek, A. ;
Momeni-Masuleh, S. H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (08) :2493-2500