On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group

被引:0
|
作者
V. del Barco
G. P. Ovando
F. Vittone
机构
[1] Universidad Nacional de Rosario,Depto de Matemática, ECEN
来源
Mediterranean Journal of Mathematics | 2014年 / 11卷
关键词
53C50; 53C30; 22E25; 57S25; Pseudo-Riemannian spaces; naturally reductive; Lie groups; Heisenberg group;
D O I
暂无
中图分类号
学科分类号
摘要
This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm H}_3(\mathbb{R})}$$\end{document} and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm H}_3(\mathbb{R})}$$\end{document} by isometries and we study some geometrical features on these spaces. On H3(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm H}_3(\mathbb{R})}$$\end{document} , we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons.
引用
收藏
页码:137 / 153
页数:16
相关论文
共 50 条