On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group

被引:0
|
作者
V. del Barco
G. P. Ovando
F. Vittone
机构
[1] Universidad Nacional de Rosario,Depto de Matemática, ECEN
来源
Mediterranean Journal of Mathematics | 2014年 / 11卷
关键词
53C50; 53C30; 22E25; 57S25; Pseudo-Riemannian spaces; naturally reductive; Lie groups; Heisenberg group;
D O I
暂无
中图分类号
学科分类号
摘要
This work concerns the invariant Lorentzian metrics on the Heisenberg Lie group of dimension three H3(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm H}_3(\mathbb{R})}$$\end{document} and the bi-invariant metrics on the solvable Lie groups of dimension four. We start with the indecomposable Lie groups of dimension four admitting bi-invariant metrics and which act on H3(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm H}_3(\mathbb{R})}$$\end{document} by isometries and we study some geometrical features on these spaces. On H3(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm H}_3(\mathbb{R})}$$\end{document} , we prove that the property of the metric being proper naturally reductive is equivalent to the property of the center being non-degenerate. These metrics are Lorentzian algebraic Ricci solitons.
引用
收藏
页码:137 / 153
页数:16
相关论文
共 50 条
  • [1] On the Isometry Groups of Invariant Lorentzian Metrics on the Heisenberg Group
    del Barco, V.
    Ovando, G. P.
    Vittone, F.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (01) : 137 - 153
  • [2] Classification of left-invariant metrics on the Heisenberg group
    Vukmirovic, Srdjan
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 94 : 72 - 80
  • [3] CHARACTERIZE ON THE HEISENBERG GROUP WITH LEFT INVARIANT LORENTZIAN METRIC
    Turhan, Essin
    Korpinar, Talat
    DEMONSTRATIO MATHEMATICA, 2009, 42 (02) : 425 - 430
  • [4] Left-Invariant Lorentzian Flat Metrics on Lie Groups
    Ben Haddou, Malika Ait
    Boucetta, Mohamed
    Lebzioui, Hicham
    JOURNAL OF LIE THEORY, 2012, 22 (01) : 269 - 289
  • [5] Lorentzian geometry of the Heisenberg group
    Rahmani, N.
    Rahmani, S.
    GEOMETRIAE DEDICATA, 2006, 118 (01) : 133 - 140
  • [6] A CLASSIFICATION OF LEFT-INVARIANT LORENTZIAN METRICS ON SOME NILPOTENT LIE GROUPS
    Kondo, Yuji
    Tamaru, Hiroshi
    TOHOKU MATHEMATICAL JOURNAL, 2023, 75 (01) : 89 - 117
  • [7] Left invariant Randers metrics on the 3-dimensional Heisenberg group
    Toth, A. Lengyelne
    Kovacs, Zoltan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 161 - 179
  • [8] Invariant surfaces of the Heisenberg groups
    Christiam B. Figueroa
    Francesco Mercuri
    Renato H. L. Pedrosa
    Annali di Matematica Pura ed Applicata, 1999, 177 : 173 - 194
  • [9] Sub-Lorentzian Problem on the Heisenberg Group
    Yu. L. Sachkov
    E. F. Sachkova
    Mathematical Notes, 2023, 113 : 159 - 162
  • [10] Sub-Lorentzian Problem on the Heisenberg Group
    Sachkov, Yu. L.
    Sachkova, E. F.
    MATHEMATICAL NOTES, 2023, 113 (1-2) : 159 - 162