Existence of either a periodic collisional orbit or infinitely many consecutive collision orbits in the planar circular restricted three-body problem

被引:0
作者
Urs Frauenfelder
Lei Zhao
机构
[1] University of Augsburg,
来源
Mathematische Zeitschrift | 2019年 / 291卷
关键词
Planar Circular Restricted Three-body Problem; Collision Periodic Orbits; Floer Homology; Jacobi Energy; Reeb Chords;
D O I
暂无
中图分类号
学科分类号
摘要
In the restricted three-body problem, consecutive collision orbits are those orbits which start and end at collisions with one of the primaries. Interests for such orbits arise not only from mathematics but also from various engineering problems. In this article, using Floer homology, we show that there is either a periodic collisional orbit, or there are infinitely many consecutive collision orbits in the planar circular restricted three-body problem on each bounded component of the energy hypersurface for Jacobi energy below the first critical value.
引用
收藏
页码:215 / 225
页数:10
相关论文
共 18 条
  • [1] Albers P(2010)Spectral invariants in Rabinowitz–Floer homology and global Hamiltonian perturbations J. Mod. Dyn. 4 329-357
  • [2] Frauenfelder U(2011)Contact geometry of the restricted three-body problem Commun. Pure Appl. Math. 65 229-263
  • [3] Albers P(1915)The restricted problem of three bodies Rend. Circ. Matem. Palermo 39 265-334
  • [4] Frauenfelder U(2009)A Floer homology for exact contact embeddings Pac. J. Math. 239 216-251
  • [5] van Koert O(2017)Periodic orbits in the restricted three-body problem and Arnold’s Regul. Chaotic Dyn. 22 408-434
  • [6] Paternain G(1968)-invariant Bull. Astron. 3 377-402
  • [7] Birkhoff G(2010)Sur les orbites interplanètaire qui rencontrent deux fois la terre J. Mod. Dyn. 4 733-739
  • [8] Cieliebak K(2014)Survival of infinitely many critical points for the Rabinowitz action functional Geom. Dedicata 171 345-386
  • [9] Frauenfelder U(2002)Lagrangian Rabinowitz Floer homology and twisted cotangent bundles Celest. Mech. Dyn. Astron. 83 325-353
  • [10] Cieliebak K(1970)How the method of minimization of action avoids singularities Commun. Pure Appl. Math. 23 609-636