Symplectic Structures of Moduli Space¶of Higgs Bundles over a Curve and Hilbert Scheme¶of Points on the Canonical Bundle

被引:0
|
作者
Indranil Biswas
Avijit Mukherjee
机构
[1] School of Mathematics,
[2] Tata Institute of Fundamental Research,undefined
[3] Homi Bhabha Road,undefined
[4] Bombay 400005,undefined
[5] India. E-mail: indranil@math.tifr.res.in,undefined
[6] Scuola Internazionale Superiore di Studi Avanzati,undefined
[7] via Beirut 4,undefined
[8] 34014 Trieste,undefined
[9] Italy.¶E-mail: avijit@sissa.it,undefined
来源
Communications in Mathematical Physics | 2001年 / 221卷
关键词
Modulus Space; Spectral Data; Riemann Surface; Line Bundle; Symplectic Form;
D O I
暂无
中图分类号
学科分类号
摘要
The moduli space of triples of the form (E,θ,s) are considered, where (E,θ) is a Higgs bundle on a fixed Riemann surface X, and s is a nonzero holomorphic section of E. Such a moduli space admits a natural map to the moduli space of Higgs bundles simply by forgetting s. If (Y,L) is the spectral data for the Higgs bundle (E,θ), then s defines a section of the line bundle L over Y. The divisor of this section gives a point of a Hilbert scheme, parametrizing 0-dimensional subschemes of the total space of the canonical bundle KX, since Y is a curve on KX. The main result says that the pullback of the symplectic form on the moduli space of Higgs bundles to the moduli space of triples coincides with the pullback of the natural symplectic form on the Hilbert scheme using the map that sends any triple (E,θ,s) to the divisor of the corresponding section of the line bundle on the spectral curve.
引用
收藏
页码:293 / 304
页数:11
相关论文
共 50 条