lp/2,q/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{p/2,q/2}$$\end{document}-Singular values of a real partially symmetric rectangular tensor

被引:0
作者
Jianxing Zhao
机构
[1] Guizhou Minzu University,School of Data Science and Information Engineering
关键词
Rectangular tensors; Nonnegative tensors; -singular values; -singular values; Positive definiteness; 15A18; 15A42; 15A69;
D O I
10.1007/s13160-022-00555-6
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document} be a real (p, q)-th order m×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\times n$$\end{document} dimensional partially symmetric rectangular tensor with p and q even. Firstly, in order to judge the positive definiteness of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document}, an lp/2,q/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{p/2,q/2}$$\end{document}-singular value inclusion interval with parameters is constructed. Subsequently, by finding the optimal values of parameters, the optimal parameter inclusion interval of lp/2,q/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{p/2,q/2}$$\end{document}-singular values is derived, which provides a sufficient condition for the positive definiteness of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document}. Secondly, when A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document} is a nonnegative tensor, lower and upper bounds for its lp/2,q/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{p/2,q/2}$$\end{document}-spectral radius are given. Thirdly, a direct method for finding all lp/2,q/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{p/2,q/2}$$\end{document}-singular value/vectors pairs of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document} with p=q=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=q=4$$\end{document} and m=n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=n=2$$\end{document} is presented. Finally, a numerical example is given to verify the theoretical results.
引用
收藏
页码:843 / 875
页数:32
相关论文
共 70 条
[1]  
Chang KC(2010)Singular values of a real rectangular tensor J. Math. Anal. Appl. 370 284-294
[2]  
Qi L(2013)A tensor singular values and its symmetric embedding eigenvalues J. Comput. Appl. Math. 250 217-228
[3]  
Zhou G(2013)The solution methods for the largest eigenvalue (singular value) of nonnegative tensors and convergence analysis Linear Algebra Appl. 439 3713-3733
[4]  
Chen Z(2007)A tensor product matrix approximation problem in quantum physics Linear Algebra Appl. 420 711-725
[5]  
Lu L(1935)Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 777-780
[6]  
Chen Z(2019)Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors J. Ind. Manag. Optim. 15 775-789
[7]  
Qi L(2019)-singular values of rectangular tensors and their applications J. Inequal. Appl. 2019 84-263
[8]  
Yang Q(2021)Rectangular M-tensors and strong rectangular M-tensors ScienceAsia 47 257-169
[9]  
Yang Y(2021)Bi-block positive semidefiniteness of bi-block symmetric tensors Front. Math. China 16 141-361
[10]  
Dahl G(1975)On the ellipticity of the equations of non-linear elastostatics for a special material J. Elast. 5 341-336