Spectral dependence of the localization degree in the one-dimensional disordered Lloyd model

被引:0
作者
G. G. Kozlov
机构
[1] St. Petersburg State University,Fock Institute of Physics
来源
Theoretical and Mathematical Physics | 2012年 / 171卷
关键词
Anderson localization; one-dimensional disordered system; Green’s function;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the Anderson criterion and the spectral dependence of the degree of localization in the first nonvanishing approximation with respect to disorder for one-dimensional diagonally disordered models with a site energy distribution function that has no finite even moments higher than the zeroth. For this class of models (for which the usual perturbation theory is inapplicable), we show that the perturbation theory can be consistently constructed for the joint statistics of advanced and retarded Green’s functions. Calculations for the Lloyd model show that the Anderson criterion in this case is a linear (not quadratic as usual) function of the disorder degree. We illustrate the calculations with computer experiments.
引用
收藏
页码:531 / 540
页数:9
相关论文
共 27 条
[1]  
Jelley E. E.(1936)undefined Nature 38 1009-1010
[2]  
Scheibe G.(1937)undefined Angew. Chem. 50 212-219
[3]  
Rodríguez A.(2003)undefined Phys. Rev. Lett. 90 027404-14146
[4]  
Malyshev V. A.(1999)undefined Phys. Rev. B 60 14140-1725
[5]  
Sierra G.(2003)undefined Phys. Rev. Lett. 91 176601-L292
[6]  
Martín-Delgado M. A.(1969)undefined J. Phys. C 2 1717-8549
[7]  
Rodríguez-Laguna J.(1983)undefined J. Phys. C 16 L929-1633
[8]  
Domínguez-Adame F.(1984)undefined J. Phys. C 17 L289-2681
[9]  
Malyshev V. A.(1986)undefined Phys. Rev. B 34 8545-253
[10]  
Rodrígues A.(1989)undefined Phys. Rev. A 39 1628-1505