Anderson Localization for Periodically Driven Systems

被引:0
作者
Raphael Ducatez
François Huveneers
机构
[1] Université Paris-Dauphine,PSL Research University, CNRS, CEREMADE
来源
Annales Henri Poincaré | 2017年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the persistence of localization for a strongly disordered tight-binding Anderson model on the lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z}^d$$\end{document}, periodically driven on each site. Under two different sets of conditions on the driving, we show that Anderson localization survives if the driving frequency is higher than some threshold value. We discuss the implication of our results for recent development in condensed matter physics, we compare them with the predictions issuing from adiabatic theory, and we comment on the connection with Mott’s law, derived within the linear response formalism.
引用
收藏
页码:2415 / 2446
页数:31
相关论文
共 57 条
[1]  
Abanin D(2015)Exponentially slow heating in periodically driven many-body systems Phys. Rev. Lett. 115 256803-11
[2]  
De Roeck W(2016)Theory of many-body localization in periodically driven systems Ann. Phys. 372 1-278
[3]  
Huveneers F(1993)Localization at large disorder and at extreme energies: an elementary derivation Commun. Math. Phys. 157 245-1505
[4]  
Abanin D(1958)Absence of diffusion in certain random lattices Phys. Rev. 109 1492-466
[5]  
De Roeck W(2004)Anderson localization for time quasi-periodic random Schrödinger and wave equations Commun. Math. Phys. 248 429-33
[6]  
Huveneers F(2013)Many-body energy localization transition in periodically driven systems Ann. Phys. 333 19-29
[7]  
Aizenman M(2014)Long-time behavior of isolated periodically driven interacting lattice systems Phys. Rev. X 4 041048-184
[8]  
Molchanov S(2001)Multi-scale analysis implies strong dynamical localization Geom. Funct. Anal. GAFA 11 11-444
[9]  
Anderson PW(1983)Absence of diffusion in the Anderson tight binding model for large disorder or low energy Commun. Math. Phys. 88 151-494
[10]  
Bourgain J(2015)Low-frequency conductivity in many-body localized systems Phys. Rev. B 92 104202-577