Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction

被引:0
作者
Yi Shi
Wenrui Dai
Meng Wang
Yongfang Xing
Xinghua Xia
Wei Chen
机构
[1] National University of Singapore,Department of Chemistry
[2] Nanjing University,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
[3] National University of Singapore(Suzhou) Research Institute,Joint School of National University of Singapore and Tianjin University
[4] International Campus of Tianjin University,Department of Physics
[5] National University of Singapore,undefined
来源
Chemical Research in Chinese Universities | 2020年 / 36卷
关键词
Ruthenium; Graphene aerogel; Hydrogen evolution reaction; Electronic modulation; Electrocatalysis;
D O I
暂无
中图分类号
学科分类号
摘要
Rational construction of low-cost, efficient, and durable electrocatalysts for the hydrogen evolution reaction(HER) is essential to further develop water electrolysis industry. Inspired by the natural enzyme catalysis with coordination environments of catalytic sites and three-dimensional structures, we construct an efficient Ru-based catalyst anchored on the nitrogen dopant on graphene aerogel(Ru-NGA). The Ru-NGA catalyst exhibits dramatically improved electroactivity and stability towards HER with a near-zero onset overpotential, a low Tafel slope of 32 mV/dec, and a high turnover frequency of 5.5 s−1 at −100 mV. The results show that the electronic modulation of metallic Ru nanoparticles by nitrogen coordination weakens the affinity of Ru towards H and hence facilitates the desorption of hydrogen. This research provides in-depth insights into the fundamental relationship between metallic nanostructure and HER activity, and also guides the rational design of high-performance electrocatalysts in energy conversion.
引用
收藏
页码:709 / 714
页数:5
相关论文
共 50 条
  • [1] Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction
    Shi, Yi
    Dai, Wenrui
    Wang, Meng
    Xing, Yongfang
    Xia, Xinghua
    Chen, Wei
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (04) : 709 - 714
  • [2] Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction
    Ding, Yu
    Cao, Kai-Wen
    He, Jia-Wei
    Li, Fu-Min
    Huang, Hao
    Chen, Pei
    Chen, Yu
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (06) : 1535 - 1543
  • [3] Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction
    Ding Y.
    Cao K.-W.
    He J.-W.
    Li F.-M.
    Huang H.
    Chen P.
    Chen Y.
    Chinese Journal of Catalysis, 2022, 43 (06): : 1535 - 1543
  • [4] Highly dispersed of Ni0.85Se nanoparticles on nitrogen-doped graphene oxide as efficient and durable electrocatalyst for hydrogen evolution reaction
    Fu, Huiying
    Chen, Yajie
    Ren, Zhiyu
    Xiao, Yuting
    Liu, Yingying
    Zhang, Xin
    Tian, Guohui
    ELECTROCHIMICA ACTA, 2018, 262 : 107 - 114
  • [5] Nitrogen-Doped Nickel Sulfide Composite Array Electrode as an Efficient Electrocatalyst for Hydrogen Evolution Reaction
    Shengjue Deng
    Yan Zhang
    Yahao Li
    Journal of Electronic Materials, 2021, 50 : 5081 - 5089
  • [6] Nitrogen-doped cobalt sulfide as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and acidic media
    Ahmed, Abu Talha Aqueel
    Sekar, Sankar
    Lee, Sejoon
    Im, Hyunsik
    Preethi, V
    Ansari, Abu Saad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (95) : 40340 - 40348
  • [7] Nitrogen-Doped Nickel Sulfide Composite Array Electrode as an Efficient Electrocatalyst for Hydrogen Evolution Reaction
    Deng, Shengjue
    Zhang, Yan
    Li, Yahao
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (09) : 5081 - 5089
  • [8] Ultralow Loading Ruthenium Nanoparticles on Nitrogen-Doped Graphene Aerogel for Trifunctional Electrocatalysis
    Zhu, Bingjun
    Qu, Chong
    Gao, Song
    Liang, Zibin
    Zhang, Hao
    Zou, Ruqiang
    CHEMCATCHEM, 2018, 10 (05) : 1113 - 1121
  • [9] Cobalt-molybdenum disulfide supported on nitrogen-doped graphene towards an efficient hydrogen evolution reaction
    Hou, Xuewei
    Li, Yuan
    Cheng, Lina
    Feng, Xuelei
    Zhang, Hongming
    Han, Shumin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) : 11664 - 11674
  • [10] Solvothermal access to rich nitrogen-doped molybdenum carbide nanowires as efficient electrocatalyst for hydrogen evolution reaction
    Chi, Jing-Qi
    Yan, Kai-Li
    Gao, Wen-Kun
    Dong, Bin
    Shang, Xiao
    Liu, Yan-Ru
    Li, Xiao
    Chai, Yong-Ming
    Liu, Chen-Guang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 714 : 26 - 34