Neural networks meet least squares Monte Carlo at internal model data

被引:0
作者
Christian Jonen
Tamino Meyhöfer
Zoran Nikolić
机构
[1] Generali Deutschland AG,Mathematical Institute
[2] University of Cologne,undefined
来源
European Actuarial Journal | 2023年 / 13卷
关键词
Least squares Monte Carlo; Neural networks; Solvency II; Proxy modeling; Insurance risk management; Cash flow projection models; Risk-neutral valuation; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
In August 2020 we published “Comprehensive Internal Model Data for Three Portfolios” as an outcome of our work for the committee “Actuarial Data Science” of the German Actuarial Association. The data sets include realistic cash-flow models outputs used for proxy modelling of life and health insurers. Using these data, we implement the hitherto most promising model in proxy modeling consisting of ensembles of feed-forward neural networks and compare the results with the least squares Monte Carlo (LSMC) polynomial regression. To date, the latter represents—to our best knowledge—the most accurate proxy function productively in use by insurance companies. An additional goal of this publication is a more precise description of “Comprehensive Internal Model Data for Three Portfolios” for other researchers, practitioners and regulators interested in developing solvency capital requirement (SCR) proxy models.
引用
收藏
页码:399 / 425
页数:26
相关论文
共 13 条
[1]  
Andersen L(2004)A primal-dual simulation algorithm for pricing multi-dimensional American options Manag Sci 50 1222-1234
[2]  
Broadie M(2014)Anwendung von Least Squares Monte Carlo (LSMC) im Solvency-II-Kontext-Teil 1 Der Aktuar 2 85-91
[3]  
Bettels C(2021)A neural network model for solvency calculations in life insurance Ann Actuar Sci 15 259-275
[4]  
Fabrega J(2017)Efficient valuation of SCR via a neural network approach J Comput Appl Math 313 427-439
[5]  
Weiß C(2001)Valuing American options by simulation: a simple least-squares approach Rev Financ Stud 14 113-147
[6]  
Fernandez-Arjona L(2017)Robust regression technique in LSMC proxy modeling Der Aktuar 1 8-16
[7]  
Hejazi SA(undefined)undefined undefined undefined undefined-undefined
[8]  
Jackson KR(undefined)undefined undefined undefined undefined-undefined
[9]  
Longstaff FA(undefined)undefined undefined undefined undefined-undefined
[10]  
Schwartz ES(undefined)undefined undefined undefined undefined-undefined