A local description of the non-flat infinitesimally bendable Euclidean hypersurfaces was recently given by Dajczer and Vlachos (Ann Mat 196:1961–1979, 2017. https://doi.org/10.1007/s10231-017-0641-8). From their classification, it follows that there is an abundance of infinitesimally bendable hypersurfaces that are not isometrically bendable. In this paper we consider the case of complete hypersurfaces f:Mn→Rn+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f:M^n\rightarrow \mathbb {R}^{n+1}$$\end{document}, n≥4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\ge 4$$\end{document}. If there is no open subset where f is either totally geodesic or a cylinder over an unbounded hypersurface of R4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^4$$\end{document}, we prove that f is infinitesimally bendable only along ruled strips. In particular, if the hypersurface is simply connected, this implies that any infinitesimal bending of f is the variational field of an isometric bending.