Shape preserving HC2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HC^2$$\end{document} interpolatory subdivision

被引:0
作者
Davide Lettieri
Carla Manni
Francesca Pelosi
Hendrik Speleers
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
关键词
Subdivision; Hermite interpolation; Shape preservation; Bézier form; 65D05; 65D17;
D O I
10.1007/s10543-014-0530-0
中图分类号
学科分类号
摘要
A subdivision procedure is developed to solve a C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} Hermite interpolation problem with the further request of preserving the shape of the initial data. We consider a specific non-stationary and non-uniform variant of the Merrien HC2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HC^2$$\end{document} subdivision family, and we provide a data dependent strategy to select the related parameters which ensures convergence and shape preservation for any set of initial monotone and/or convex data. Each step of the proposed subdivision procedure can be regarded as the midpoint evaluation of an interpolating function—and of its first and second derivatives—in a suitable space of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} functions of dimension 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6$$\end{document} which has tension properties. The limit function of the subdivision procedure is a C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} piecewise quintic polynomial interpolant.
引用
收藏
页码:751 / 779
页数:28
相关论文
共 44 条
  • [31] Manni C(undefined) Merrien’s curves undefined undefined undefined-undefined
  • [32] Manni C(undefined)An interpolation curve using a spline in tension undefined undefined undefined-undefined
  • [33] Mazure ML(undefined)undefined undefined undefined undefined-undefined
  • [34] Mazure ML(undefined)undefined undefined undefined undefined-undefined
  • [35] Merrien JL(undefined)undefined undefined undefined undefined-undefined
  • [36] Merrien JL(undefined)undefined undefined undefined undefined-undefined
  • [37] Merrien JL(undefined)undefined undefined undefined undefined-undefined
  • [38] Sablonnière P(undefined)undefined undefined undefined undefined-undefined
  • [39] Merrien JL(undefined)undefined undefined undefined undefined-undefined
  • [40] Sablonnière P(undefined)undefined undefined undefined undefined-undefined