Shape preserving HC2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HC^2$$\end{document} interpolatory subdivision

被引:0
作者
Davide Lettieri
Carla Manni
Francesca Pelosi
Hendrik Speleers
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
关键词
Subdivision; Hermite interpolation; Shape preservation; Bézier form; 65D05; 65D17;
D O I
10.1007/s10543-014-0530-0
中图分类号
学科分类号
摘要
A subdivision procedure is developed to solve a C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} Hermite interpolation problem with the further request of preserving the shape of the initial data. We consider a specific non-stationary and non-uniform variant of the Merrien HC2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HC^2$$\end{document} subdivision family, and we provide a data dependent strategy to select the related parameters which ensures convergence and shape preservation for any set of initial monotone and/or convex data. Each step of the proposed subdivision procedure can be regarded as the midpoint evaluation of an interpolating function—and of its first and second derivatives—in a suitable space of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} functions of dimension 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6$$\end{document} which has tension properties. The limit function of the subdivision procedure is a C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} piecewise quintic polynomial interpolant.
引用
收藏
页码:751 / 779
页数:28
相关论文
共 44 条
  • [1] Akima H(1970)A new method of interpolation and smooth curve fitting based on local procedures J. ACM 17 589-602
  • [2] Costantini P(2000)Curve and surface construction using variable degree polynomial splines Comput. Aided Geom. Des. 17 419-446
  • [3] Costantini P(2005)On a class of weak Tchebycheff systems Numer. Math. 101 333-354
  • [4] Lyche T(2010)Polynomial cubic splines with tension properties Comput. Aided Geom. Des. 27 592-610
  • [5] Manni C(2008)On constrained nonlinear Hermite subdivision Constr. Approx. 28 291-331
  • [6] Costantini P(2003)Shape-preserving interpolants with high smoothness J. Comput. Appl. Math. 157 383-405
  • [7] Kaklis P(1999)Regularity of irregular subdivision Constr. Approx. 15 381-426
  • [8] Manni C(1985)Shape preserving piecewise rational interpolation SIAM J. Sci. Stat. Comput. 6 967-976
  • [9] Costantini P(2006)Scalar and Hermite subdivision schemes Appl. Comput. Harm. Anal. 21 376-394
  • [10] Manni C(2002)Subdivision schemes in geometric modelling Acta Numer. 11 73-144