Simulation of First-Passage Times for Alternating Brownian Motions

被引:0
作者
A. Di Crescenzo
E. Di Nardo
L. M. Ricciardi
机构
[1] Università di Salerno,Dipartimento di Matematica e Informatica
[2] Università degli Studi della Basilicata,Dipartimento di Matematica
[3] Università di Napoli Federico II,Dipartimento di Matematica e Applicazioni
来源
Methodology and Computing in Applied Probability | 2005年 / 7卷
关键词
Brownian motion; alternating infinitesimal moments; renewal process; first-passage time; simulation;
D O I
暂无
中图分类号
学科分类号
摘要
The first-passage-time problem for a Brownian motion with alternating infinitesimal moments through a constant boundary is considered under the assumption that the time intervals between consecutive changes of these moments are described by an alternating renewal process. Bounds to the first-passage-time density and distribution function are obtained, and a simulation procedure to estimate first-passage-time densities is constructed. Examples of applications to problems in environmental sciences and mathematical finance are also provided.
引用
收藏
页码:161 / 181
页数:20
相关论文
共 32 条
  • [1] Buonocore A.(1987)A new integral equation for the evaluation of first-passage-time probability densities Advances in Applied Probability 27 102-114
  • [2] Nobile A. G.(2002)Input-output behavior of a model neuron with alternating drift BioSystems 67 27-34
  • [3] Ricciardi L. M.(2000)Swimming against the tide Nature 408 764-766
  • [4] Buonocore A.(2001)A computational approach to first-passage-time problems for Gauss-Markov processes Advances in Applied Probability 33 453-482
  • [5] Di Crescenzo A.(1997)On a stochastic model for moisture budget in an Eulerian atmospheric column Environmetrics 8 425-440
  • [6] Di Nardo E.(1989)On the evaluation of first-passage-time probability densities via nonsingular equations Advances in Applied Probability 21 20-36
  • [7] Cyranoski D.(1999)Telecommunication traffic, queueing models, and subexponential distributions Queueing Systems 33 125-152
  • [8] Di Nardo E.(1999)A single myosin head moves along an actin filament with regular steps of 5.3 nanometres Nature 397 129-134
  • [9] Nobile A. G.(1976)Generating random variates using transformations with multiple roots The American Statistician 30 88-90
  • [10] Pirozzi E.(1998)Large deviations of heavy-tailed sums with applications in insurance Extremes 1 81-110