Criticality in FitzHugh-Nagumo oscillator ensembles: Design, robustness, and spatial invariance

被引:0
|
作者
Bakr Al Beattie
Petro Feketa
Karlheinz Ochs
Hermann Kohlstedt
机构
[1] Ruhr-University Bochum,Chair of Digital Communication Systems
[2] Victoria University of Wellington,School of Mathematics and Statistics
[3] Kiel University,Chair of Nanoelectronics
[4] Kiel University,Kiel Nano, Surface and Interface Science KiNSIS
来源
Communications Physics | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reservoir computing is an efficient and flexible framework for decision-making, control, and signal processing. It uses a network of interacting components varying from abstract nonlinear dynamical systems to physical substrates. Despite recent progress, the hardware implementation with inherent parameter variability and uncertainties, such as those mimicking the properties of living organisms’ nervous systems, remains an active research area. To address these challenges, we propose a constructive approach using a network of FitzHugh-Nagumo oscillators, exhibiting criticality across a broad range of resistive coupling strengths and robustness without specific parameter tuning. Additionally, the network’s activity demonstrates spatial invariance, offering freedom in choosing readout nodes. We introduce an alternative characterization of criticality by analyzing power dissipation, and demonstrate that criticality supports the robustness of the classification accuracy with respect to the readout shrinkage. Our results indicate criticality as a valuable property for classification problems, and provides design concepts for bio-inspired computational paradigms.
引用
收藏
相关论文
共 28 条
  • [1] Criticality in FitzHugh-Nagumo oscillator ensembles: Design, robustness, and spatial invariance
    Al Beattie, Bakr
    Feketa, Petro
    Ochs, Karlheinz
    Kohlstedt, Hermann
    COMMUNICATIONS PHYSICS, 2024, 7 (01)
  • [2] Fluidic FitzHugh-Nagumo oscillator
    Fromm, Matthias
    Grundmann, Sven
    Seifert, Avraham
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [3] The modified FitzHugh-Nagumo system as an oscillator
    Rabinovitch, A.
    Friedman, M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (03) : 371 - 378
  • [4] Chimera states in ensembles of excitable FitzHugh-Nagumo systems
    Semenova, Nadezhda
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (12-13): : 2295 - 2306
  • [5] Robustness of chimera states for coupled FitzHugh-Nagumo oscillators
    Omelchenko, Iryna
    Provata, Astero
    Hizanidis, Johanne
    Schoell, Eckehard
    Hoevel, Philipp
    PHYSICAL REVIEW E, 2015, 91 (02)
  • [6] Stochastic bifurcation in FitzHugh-Nagumo ensembles subjected to additive and/or multiplicative noises
    Hasegawa, Hideo
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 137 - 155
  • [7] COMPENSATOR DESIGN FOR THE MONODOMAIN EQUATIONS WITH THE FITZHUGH-NAGUMO MODEL
    Breiten, Tobias
    Kunisch, Karl
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) : 241 - 262
  • [8] Noise-induced extreme events in single Fitzhugh-Nagumo oscillator
    Hariharan, S.
    Suresh, R.
    Chandrasekar, V. K.
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [9] Compensator design for the monodomain equations with the fitzhugh-nagumo model
    Institute for Mathematics and Scientic Computing, Karl-Franzens-Universität, Heinrichstr. 36, Graz
    8010, Austria
    不详
    4040, Austria
    Control Optimisation Calc. Var.,
  • [10] An advanced design method of bursting in FitzHugh-Nagumo model
    Tsuji, S
    Ueta, T
    Kawakami, H
    Aihara, K
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL I, PROCEEDINGS, 2002, : 389 - 392