Large Time Behavior and Stability for Two-Dimensional Magneto-Micropolar Equations with Partial Dissipation

被引:0
作者
Ming Li
Jianxia He
机构
[1] Northwest University,Center for Nonlinear Studies, School of Mathematics
来源
Journal of Nonlinear Mathematical Physics | 2023年 / 30卷
关键词
2D magneto-micropolar equations; Partial dissipation; Large time behavior; 35Q35; 35B40; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the stability and decay estimates of solutions to the two-dimensional magneto-micropolar fluid equations with partial dissipation. Firstly, focus on the 2D magneto-micropolar equation with only velocity dissipation and partial magnetic diffusion, we obtain the global existence of solutions with small initial in Hs(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s({\mathbb {R}}^2)$$\end{document}(s>1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(s>1)$$\end{document}, and by fully exploiting the special structure of the system and using the Fourier splitting methods, we establish the large time decay rates of solutions. Secondly, when the magnetic field has partial dissipation, we show the global existence of solutions with small initial data in B˙2,10(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{B}^0_{2,1}({\mathbb {R}}^2)$$\end{document}. In addition, we explore the decay rates of these global solutions are correspondingly established in B˙2,1m(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{B}^m_{2,1}({\mathbb {R}}^2)$$\end{document} with 0≤m≤s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le m \le s$$\end{document}, when the initial data belongs to the negative Sobolev space H˙-l(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{-l}({\mathbb {R}}^2)$$\end{document} (for each 0≤l<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le l <1$$\end{document}).
引用
收藏
页码:1567 / 1600
页数:33
相关论文
共 58 条
[1]  
Ahmadi G(1974)Universal stability of magneto-micropolar fluid motions Int. J. Eng. Sci. 12 657-663
[2]  
Shahinpoor M(2011)Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion Adv. Math. 226 1803-1822
[3]  
Cao C(2012)Global well-posedness for the micropolar fluid system in critical Besov spaces J. Differ. Equ. 252 2698-2724
[4]  
Wu J(2013)Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity. Acta Math Sci. Ser. B Engl. Ed. 33 929-935
[5]  
Chen Q(2014)The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion SIAM J. Math. Anal. 46 588-602
[6]  
Miao C(2015)Global regularity of the 2D magnetic micropolar fluid flows with mixed partial viscosity Comput. Math. Appl. 70 66-72
[7]  
Chen M(2010)Global regularity of the 2D micropolar fluid flows with zero angular viscosity J. Differ. Equ. 249 200-213
[8]  
Cao C(2017)Global well-posedness and large-time decay for the 2D micropolar equations J. Differ. Equ. 262 3488-3523
[9]  
Wu J(2018)Global regularity and time decay for the 2D magnetohydrodynamic equations with fractional dissipation and partial magnetic diffusion J. Math. Fluid Mech. 20 1541-1565
[10]  
Yuan B(2015)Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion SIAM J. Math. Anal. 47 1562-1589