Exact solutions and bifurcation curves of nonlocal elliptic equations with convolutional Kirchhoff functions

被引:0
|
作者
Shibata, Tetsutaro [1 ]
机构
[1] Hiroshima Univ, Grad Sch Adv Sci & Engn, Lab Math, Higashihiroshima 7398527, Japan
来源
BOUNDARY VALUE PROBLEMS | 2024年 / 2024卷 / 01期
基金
日本学术振兴会;
关键词
Nonlocal elliptic equations; Convolutional Kirchhoff functions; Exact solutions; POSITIVE SOLUTIONS;
D O I
10.1186/s13661-024-01871-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the one-dimensional nonlocal elliptic equation of Kirchhoff type with convolutional Kirchhoff functions. We establish the exact solutions u lambda \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{\lambda}$\end{document} and bifurcation curves lambda ( alpha ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda (\alpha )$\end{document} , where alpha : = parallel to u lambda parallel to infinity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha := \Vert u_{\lambda}\Vert _{\infty}$\end{document} .
引用
收藏
页数:13
相关论文
共 50 条