Convergence of lagrange interpolation processes based on new systems of nodes

被引:0
作者
F. Peherstorfer
机构
[1] J. Kepler Universität Linz,Institut für Mathematik
来源
Acta Mathematica Hungarica | 1997年 / 74卷
关键词
Weight Function; Unit Circle; Orthogonal Polynomial; Lagrange Interpolation; Interpolation Process;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:101 / 123
页数:22
相关论文
共 19 条
[1]  
Badkov V. M.(1985)Uniform asymptotic representations of orthogonal polynomials Proc. Steklov Inst. Math. 164 5-41
[2]  
Bellen A.(1981)A note on mean convergence of Lagrange interpolation J. Approx. Th. 33 85-95
[3]  
Criscuolo G.(1993)Extended Lagrange interpolation by zeros of Jacobi polynomials of second kind Rend. Circ. Mat. Palermo 33 281-287
[4]  
Della Vecchia B.(1993)Mean convergence of the derivatives of extended Lagrange interpolation with additional nodes Math. Nachr. 163 73-92
[5]  
Criscuolo G.(1937)On interpolation I Annals Math. 38 142-155
[6]  
Mastroanni G.(1948)Polynomials orthogonal on a circle and their applications Zap. Nauchn. Issled. Inst. Mat. Khar’kov Mat. Obsc. 19 35-120
[7]  
Nevai P.(1965)Asymptotic formulas for orthogonal polynomials Teor. Funkcii. Funkcional Anal. i. Prizolen 1 141-163
[8]  
Erdős P.(1988)Orthogonal polynomials in J. Approx. Theory 52 241-268
[9]  
Turán P.(1992)-approximation J. Approx. Theory 70 156-190
[10]  
Geronimus Ya. L.(1995)On the asymptotic behaviour of functions of the second kind and Stieltjes polynomials and on the Gauss-Kronrod quadrature formulas Proc. Math. Cambr. 117 533-544