Summation Formulas on Harmonic Numbers and Five Central Binomial Coefficients

被引:0
作者
Chunli Li
Wenchang Chu
机构
[1] Zhoukou Normal University,School ofMathematics and Statistics
来源
Mathematical Notes | 2023年 / 114卷
关键词
Riemann zeta function; harmonic number; central binomial coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1306 / 1313
页数:7
相关论文
共 11 条
  • [1] Chu W.(2021)Infinite series identities derived from the very well–poised The Ramanujan Journal 55 239-270
  • [2] Chu W.(2014)-sum Mathematics of Computation 83 475-512
  • [3] Zhang W. L.(2008)Accelerating Dougall’s The Ramanujan Journal 15 219-234
  • [4] Guillera J.(1997)-sum and infinite series involving Acta Arithmetica 82 103-118
  • [5] Chu W.(2023)Hypergeometric identities for 10 extended Ramanujan–type series arXiv: 2210.07238v7 [math. NT] 35 pp-1709
  • [6] Sun Z.-W.(2017)Hypergeometric series and the Riemann Zeta function International Journal of Number Theory 13 1695-98
  • [7] Batir N.(2021)Series with summands involving harmonic numbers The Australian Journal of Mathematical Analysis and Applications 18 Art. 15, 19 pp-161
  • [8] Campbell J. M.(2020)On some combinatorial identities and harmonic sums Tatra Mountains Mathematical Publications 77 73-undefined
  • [9] Chen K.-W.(2016)An integration technique for evaluating quadratic harmonic sums Journal of Classical Analysis 8 155-undefined
  • [10] Stewart S. M.(undefined)Explicit evaluation of some quadratic Euler–type sums containing double–index harmonic numbers undefined undefined undefined-undefined