Kirchhoff-type problems involving the fractional p-Laplacian on the Heisenberg group

被引:0
作者
Jieyu Zhou
Lifeng Guo
Binlin Zhang
机构
[1] Northeast Petroleum University,School of Mathematics and Statistics
[2] Shandong University of Science and Technology,College of Mathematics and Systems Science
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2022年 / 71卷
关键词
Heisenberg group; Fractional Laplacian; Mountain pass theorem; Kirchhoff type problem; 35J20; 35B33; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the existence of solutions for a class of Kirchhoff-type problems driven by a non-local integro-differential operator with the homogeneous Dirichlet boundary conditions on the Heisenberg group as follows: M(∬H2N|u(ξ)-u(η)|pK(η-1∘ξ)dξdη)£Kpu=f(ξ,u)inΩ,u=0inHN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} M(\iint _{{\mathbb {H}}^{2N}}|u(\xi )-u(\eta )|^{p}K(\eta ^{-1}\circ \xi )d\xi \,d\eta )\pounds ^{p}_{K}u=f(\xi ,u) &{} { \text{ in } } \Omega ,\\ u=0 &{} { \text{ in } } {\mathbb {H}}^N \setminus \Omega , \end{array} \right. \end{aligned}$$\end{document}where £Kp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pounds ^{p}_{K}$$\end{document} is a non-local integro-differential operator with singular kernel K,Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K,\Omega$$\end{document} is an open bounded subset of the Heisenberg group HN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^N$$\end{document} with Lipshcitz boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega$$\end{document}. Under some suitable assumptions on the functions M and f, together with the variational methods and the mountain pass theorem, we discuss the existence of weak solutions for the above problem on the Heisenberg group.
引用
收藏
页码:1133 / 1157
页数:24
相关论文
共 74 条
  • [1] Alves CO(2005)Positive solutions for a quasilinear elliptic equation of Kirchhoff type Comput. Math. Appl. 49 85-93
  • [2] Corrêa FJSA(2004)Lévy processes-from probability theory to finance and quantum groups Am. Math. Soc. 51 1336-1347
  • [3] Ma TF(2015)Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity Nonlinear Anal. 125 699-714
  • [4] Applebaum D(2019)Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian Proc. Roy. Soc. Edinb. A 149 1061-1081
  • [5] Autuori G(2020)Existence problems on Heisenberg groups involving hardy and critical terms J. Geom. Anal. 30 1887-1917
  • [6] Fiscella A(2012)Non-local diffusions. Drifts and games, nonlinear partial differential equations Abel Symposia 7 37-52
  • [7] Pucci P(1995)Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian Ann. Mat. Pura. Appl. 169 375-392
  • [8] Binlin Z(2011)Multiplicity of solutions for Nonlinear Anal. 74 5962-5974
  • [9] Radŭlescu V(2009)-polyharmonic elliptic Kirchhoff equations Appl. Math. Lett. 22 819-822
  • [10] Wang L(2012)On a Bull. Sci. Math. 136 521-573