Note on the Pair-crossing Number and the Odd-crossing Number

被引:0
作者
Géza Tóth
机构
[1] Hungarian Academy of Sciences,Rényi Institute
来源
Discrete & Computational Geometry | 2008年 / 39卷
关键词
Drawings of a graph; Crossing number;
D O I
暂无
中图分类号
学科分类号
摘要
The crossing number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mbox{\sc cr}}(G)$\end{document} of a graph G is the minimum possible number of edge-crossings in a drawing of G, the pair-crossing number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mbox{\sc pair-cr}}(G)$\end{document} is the minimum possible number of crossing pairs of edges in a drawing of G, and the odd-crossing number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mbox{\sc odd-cr}}(G)$\end{document} is the minimum number of pairs of edges that cross an odd number of times. Clearly, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mbox{\sc odd-cr}}(G)\le {\mbox{\sc pair-cr}}(G)\le {\mbox{\sc cr}}(G)$\end{document} . We construct graphs with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.855\cdot {\mbox{\sc pair-cr}}(G)\ge {\mbox{\sc odd-cr}}(G)$\end{document} . This improves the bound of Pelsmajer, Schaefer and Štefankovič. Our construction also answers an old question of Tutte.
引用
收藏
页码:791 / 799
页数:8
相关论文
共 7 条
  • [1] Pach J.(2000)Which crossing number is it anyway J. Comb. Theory Ser. B 80 225-246
  • [2] Tóth G.(2000)Thirteen problems on crossing numbers Geombinatorics 9 194-207
  • [3] Pach J.(2004)Decidability of string graphs J. Comput. Syst. Sci. 68 319-334
  • [4] Tóth G.(1970)Toward a theory of crossing numbers J. Comb. Theory 8 45-53
  • [5] Schaefer M.(undefined)undefined undefined undefined undefined-undefined
  • [6] Štefankovič D.(undefined)undefined undefined undefined undefined-undefined
  • [7] Tutte W.T.(undefined)undefined undefined undefined undefined-undefined