On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations

被引:0
作者
Dongho Chae
Jörg Wolf
机构
[1] Chung-Ang University,Department of Mathematics
[2] Korea Institute for Advanced Study,School of Mathematics
来源
Journal of Nonlinear Science | 2020年 / 30卷
关键词
Non-Newtonian fluid equations; Liouville type theorem; 35Q30; 76D05; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a Liouville type theorem for non-Newtonian fluid equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document}, having the diffusion term Ap(u)=∇·(|D(u)|p-2D(u))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{A}}_p( u)=\nabla \cdot ( |{\varvec{D}}(u)|^{p-2} {\varvec{D}}(u))$$\end{document} with D(u)=12(∇u+(∇u)⊤)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varvec{D}}(u) = \frac{1}{2} (\nabla u + (\nabla u)^{ \top })$$\end{document}, 3/2<p<3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3/2<p< 3$$\end{document}. In the case 3/2<p≤9/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3/2< p\le 9/5$$\end{document}, we show that a suitable weak solution u∈W1,p(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in W^{1, p}(\mathbb R^3)$$\end{document} satisfying lim infR→∞|uB(R)|=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \liminf _{R \rightarrow \infty } |u_{ B(R)}| =0$$\end{document} is trivial, i.e., u≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\equiv 0$$\end{document}. On the other hand, for 9/5<p<3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9/5<p<3$$\end{document} we prove the following Liouville type theorem: if there exists a matrix valued function V={Vij}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{V}}= \{V_{ ij}\}$$\end{document} such that ∂jVij=ui\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \partial _jV_{ ij} =u_i$$\end{document}(summation convention), whose L3p2p-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\frac{3p}{2p-3}} $$\end{document} mean oscillation has the following growth condition at infinity, ∫-B(r)|V-VB(r)|3p2p-3dx≤Cr9-4p2p-3∀1<r<+∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\int \!\!\!\!\!\!-}_{B(r)} |{\varvec{V}}- {\varvec{V}}_{ B(r)} |^{\frac{3p}{2p-3}} \mathrm{d}x \le C r^{\frac{9-4p}{2p-3}}\quad \forall 1< r< +\infty , \end{aligned}$$\end{document}then u≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\equiv 0$$\end{document}.
引用
收藏
页码:1503 / 1517
页数:14
相关论文
共 31 条
[1]  
Chae D(2014)Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations Commun. Math. Phys. 326 37-48
[2]  
Chae D(2019)On Liouville type theorem for the stationary Navier-Stokes equations Cal. Var. PDE 58 111-5560
[3]  
Wolf J(2016)On Liouville type theorems for the steady Navier–Stokes equations in J. Differ. Equ. 261 5541-710
[4]  
Chae D(2013)On the Liouville theorem for the stationary Navier–Stokes equations in a critical space J. Math. Anal. Appl. 405 706-179
[5]  
Wolf J(2019)Some Liouville theorems for stationary Navier–Stokes equations in Lebesgue and Morrey spaces. C.R. Math. Acad. Sci. Paris. 357 175-1083
[6]  
Chae D(2003)On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method SIAM J. Math. Anal. 34 1064-404
[7]  
Yoneda T(1978)Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral Ann. Sc. Norm. Super. Pisa 4 381-105
[8]  
Chamorro D(2009)Liouville theorems for the Navier–Stokes equations and applications Acta Math. 203 83-293
[9]  
Jarrin O(2015)The Liouville theorem for the steady-state Navier–Stokes problem for axially symmetric 3D solutions in absence of swirl J. Math. Fluid Mech. 17 287-818
[10]  
Lemarié-Rieusset P-G(2017)A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions J. Funct. Anal. 272 804-82