Some potentials for the curvature tensor on three-dimensional manifolds
被引:0
|
作者:
Piotr T. Chruściel
论文数: 0引用数: 0
h-index: 0
机构:Parc de Grandmont,Département de Mathématiques, Faculté des Sciences
Piotr T. Chruściel
Annelies Gerber
论文数: 0引用数: 0
h-index: 0
机构:Parc de Grandmont,Département de Mathématiques, Faculté des Sciences
Annelies Gerber
机构:
[1] Parc de Grandmont,Département de Mathématiques, Faculté des Sciences
[2] Université de Rouen,Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS
来源:
General Relativity and Gravitation
|
2005年
/
37卷
关键词:
Lanczos potential;
Riemann tensor;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study equations of Riemann–Lanczos type on three dimensional manifolds. Obstructions to global existence for global Lanczos potentials are pointed out. We check that the imposition of the original Lanczos symmetries on the potential leads to equations which do not have a determined type, leading to problems when trying to prove global existence. We show that elliptic equations can be obtained by relaxing those symmetry requirements in at least two different ways, leading to global existence of potentials under natural conditions. A second order potential for the Ricci tensor is introduced.
机构:
Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA