Computation of Large-Dimension Jordan Normal Transform via Popular Platforms

被引:0
作者
Chunxiao Shi
Yong-Cong Chen
Xia Xiong
Ping Ao
机构
[1] Shanghai University,Shanghai Center for Quantitative Life Sciences and Physics Department
来源
Journal of Nonlinear Mathematical Physics | 2023年 / 30卷
关键词
Large-dimension Jordan normal transform; Jordan matrix; Lyapunov function; Eigenvalue; (Generalized) Eigenvector;
D O I
暂无
中图分类号
学科分类号
摘要
We address the practical issue that popular computation platforms like Matlab©\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\copyright }$$\end{document} are unable to perform the Jordan normal (canonical) form J and the associated transform matrix P on a high-dimension matrix. Given the knowledge of the eigenvalues and eigenvectors of n-square matrix A obtained on these platforms, we present an efficient algorithm of Jordan transform with detailed computation steps. The efficiency is demonstrated by comparing the simulation results of 11 examples with varying orders of n to that computed by the symbolic-based and capacity-limited routine [P,J]=jordan(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[P, J] = {\textsf {jordan}}(A)$$\end{document} in Matlab©\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\copyright }$$\end{document}. Applications in stochastic dynamics are addressed.
引用
收藏
页码:834 / 842
页数:8
相关论文
共 26 条
  • [1] Yevstafyeva VV(2021)Existence of t/k-periodic solutions of a nonlinear nonautonomous system whose matrix has a multiple eigenvalue Math Notes 109 551-562 (
  • [2] Taussky O(1959)On the similarity transformation between a matrix and its transpose Pac. J. Math. 9 893-896
  • [3] Zassenhaus H(1987)Note on the factorization of a square matrix into two Hermitian or symmetric matrices SIAM Rev. 29 463-468
  • [4] Bosch AJ(2014)Computing matrix symmetrizers, finally possible via the Huang and Nong algorithm Linear Multilinear A 61 969-468
  • [5] Uhlig F(2016)Computing matrix symmetrizers, part 2: New methods using eigendata and linear means; a comparison Linear Algebra Appl. 504 590-622
  • [6] Dopico F(2005)Structure of stochastic dynamics near fixed points Proc. Natl. Acad. Sci. 102 13029-13033
  • [7] Uhlig F(2020)Global potential, topology, and pattern selection in a noisy stabilized Kuramoto–Sivashinsky equation Proc. Natl. Acad. Sci. 117 23227-23234
  • [8] Kwon C(2022)Topology, vorticity and limit cycle in a stabilized Kuramoto–Sivashinsky equation Proc. Natl. Acad. Sci. 119 2211359119-262
  • [9] Ao P(2021)The inverse variance–flatness relation in stochastic gradient descent is critical for finding flat minima Proc. Natl. Acad. Sci. 118 2015617118-516
  • [10] Thouless DJ(2004)Computing the eigenvectors of a matrix with multiplex eigenvalues by SVD method Appl. Math. Mech-ENGL 25 257-undefined