A frequency domain approach for parameter identification in multibody dynamics

被引:0
|
作者
Stefan Oberpeilsteiner
Thomas Lauss
Wolfgang Steiner
Karin Nachbagauer
机构
[1] University of Applied Sciences Upper Austria,Faculty of Engineering and Environmental Sciences
[2] Vienna University of Technology,Institute of Mechanics and Mechatronics
来源
Multibody System Dynamics | 2018年 / 43卷
关键词
Parameter identification; Frequency domain; Multibody dynamics; Adjoint system; Optimization; Fourieranalysis; Window functions; Engine orders; Order analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The adjoint method shows an efficient way to incorporate inverse dynamics to engineering multibody applications, as, e.g., parameter identification. In case of the identification of parameters in oscillating multibody systems, a combination of Fourier analysis and the adjoint method is an obvious and promising approach. The present paper shows the adjoint method including adjoint Fourier coefficients for the parameter identification of the amplitude response of oscillations. Two examples show the potential and efficiency of the proposed method in multibody dynamics.
引用
收藏
页码:175 / 191
页数:16
相关论文
共 50 条
  • [41] Frequency domain maximum likelihood identification
    McKelvey, T
    Ljung, L
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 1637 - 1642
  • [42] Automated frequency domain system identification
    Jacques, RN
    SMART STRUCTURES AND INTEGRATED SYSTEMS: SMART STRUCTURES AND MATERIALS 1996, 1996, 2717 : 350 - 360
  • [43] Linear Fractional Transformation Modeling of Multibody Dynamics Around Parameter-Dependent Equilibrium
    Kassarian, Ervan
    Sanfedino, Francesco
    Alazard, Daniel
    Chevrier, Charles-Antoine
    Montel, Johan
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (01) : 418 - 425
  • [44] State, parameter and input observers based on multibody models and Kalman filters for vehicle dynamics
    Rodriguez, Antonio J.
    Sanjurjo, Emilio
    Pastorino, Roland
    Naya, Miguel Angel
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 155
  • [45] Parameter Identification for Digital Fabrication: A Gaussian Process Learning Approach
    Stuerz, Yvonne R.
    Khosravi, Mohammad
    Smith, Roy S.
    IFAC PAPERSONLINE, 2020, 53 (02): : 395 - 400
  • [46] FREQUENCY SELECTION FOR PARAMETER IDENTIFICATION IN BIOIMPEDANCE SPECTROSCOPY
    Marin, Constantin Viorel
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2009, 54 (04): : 425 - 434
  • [47] A novel approach to tire parameter identification
    Lee, Hojong
    Taheri, Saied
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2019, 233 (01) : 55 - 72
  • [48] Coupled multibody dynamics and computational fluid dynamics approach for amphibious vehicles in the surf zone
    Yamashita, H.
    Arnold, A.
    Carrica, P. M.
    Noack, R. W.
    Martin, J. E.
    Sugiyama, H.
    Harwood, C.
    OCEAN ENGINEERING, 2022, 257
  • [49] Parameter identification of nonlinear system via a dynamic frequency approach and its energy harvester application
    Zhang, Zhiwei
    Wang, Wei
    Wang, Chen
    ACTA MECHANICA SINICA, 2020, 36 (03) : 606 - 617
  • [50] Parameter identification of nonlinear system via a dynamic frequency approach and its energy harvester application
    Zhiwei Zhang
    Wei Wang
    Chen Wang
    Acta Mechanica Sinica, 2020, 36 : 606 - 617