A Helly-Type Theorem for Semi-monotone Sets and Monotone Maps

被引:0
作者
Saugata Basu
Andrei Gabrielov
Nicolai Vorobjov
机构
[1] Purdue University,Department of Mathematics
[2] University of Bath,Department of Computer Science
来源
Discrete & Computational Geometry | 2013年 / 50卷
关键词
Monotone maps; Semi-monotone sets; Helly’s theorem ; O-minimal structures;
D O I
暂无
中图分类号
学科分类号
摘要
We consider sets and maps defined over an o-minimal structure over the reals, such as real semi-algebraic or globally subanalytic sets. A monotone map is a multi-dimensional generalization of a usual univariate monotone continuous function on an open interval, while the closure of the graph of a monotone map is a generalization of a compact convex set. In a particular case of an identically constant function, such a graph is called a semi-monotone set. Graphs of monotone maps are, generally, non-convex, and their intersections, unlike intersections of convex sets, can be topologically complicated. In particular, such an intersection is not necessarily the graph of a monotone map. Nevertheless, we prove a Helly-type theorem, which says that for a finite family of subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^n$$\end{document}, if all intersections of subfamilies, with cardinalities at most n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}, are non-empty and graphs of monotone maps, then the intersection of the whole family is non-empty and the graph of a monotone map.
引用
收藏
页码:857 / 864
页数:7
相关论文
共 11 条
[1]  
Basu S(2013)Monotone functions and maps Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 107 5-33
[2]  
Gabrielov A(2013)Semi-monotone sets J. Eur. Math. Soc. 15 635-657
[3]  
Vorobjov N(1962)The dimension of intersections of convex sets Pac. J. Math. 12 197-202
[4]  
Basu S(1930)Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten Monatsh. Math. Phys. 37 281-302
[5]  
Gabrielov A(1971)The dimension of intersections of convex sets Israel J. Math. 10 465-470
[6]  
Vorobjov N(1978)Reconstructing dimensions of intersections of convex sets Aequ. Math. 17 249-254
[7]  
Grünbaum B(1921)Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten Math. Ann. 83 113-115
[8]  
Helly E(undefined)undefined undefined undefined undefined-undefined
[9]  
Katchalski M(undefined)undefined undefined undefined undefined-undefined
[10]  
Katchalski M.(undefined)undefined undefined undefined undefined-undefined