Existence and regularity of solutions for semilinear fractional Rayleigh-Stokes equations

被引:1
作者
Jiang, Yiming [1 ]
Ren, Jingchuang [2 ]
Wei, Yawei [1 ]
机构
[1] LPMC Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 03期
基金
中国国家自然科学基金;
关键词
Existence; Regularity; Mild solution; Rayleigh-Stokes problem; Riemann-Liouville derivative; TIME;
D O I
10.1007/s00033-024-02251-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the semilinear Rayleigh-Stokes equation with the fractional derivative in time of order alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, which can be used to model anomalous diffusion in viscoelastic fluids. An operator family related to this problem is defined, and its regularity properties are investigated. We firstly give the concept of the mild solutions in terms of the operator family and then obtain the existence of global mild solutions by means of fixed point technique. Moreover, the existence and regularity of classical solutions are given.
引用
收藏
页数:23
相关论文
共 20 条
  • [1] A Parabolic Problem with a Fractional Time Derivative
    Allen, Mark
    Caffarelli, Luis
    Vasseur, Alexis
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (02) : 603 - 630
  • [2] An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid
    Bazhlekova, Emilia
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. NUMERISCHE MATHEMATIK, 2015, 131 (01) : 1 - 31
  • [3] Lp-estimates for time fractional parabolic equations with coefficients measurable in time
    Dong, Hongjie
    Kim, Doyoon
    [J]. ADVANCES IN MATHEMATICS, 2019, 345 : 289 - 345
  • [4] The Rayleigh-Stokes-problem for a Maxwell fluid
    Fetecau, C
    Zierep, J
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (06): : 1086 - 1093
  • [5] The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid
    Fetecau, Corina
    Jamil, Muhammad
    Fetecau, Constantin
    Vieru, Dumitru
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (05): : 921 - 933
  • [6] Regularity of the solution for a final value problem for the Rayleigh-Stokes equation
    Hoang Luc Nguyen
    Huy Tuan Nguyen
    Zhou, Yong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) : 3481 - 3495
  • [7] Identifying initial condition of the Rayleigh-Stokes problem with random noise
    Hoang Luc Nguyen
    Huy Tuan Nguyen
    Mokhtar, Kirane
    Xuan Thanh Duong Dang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) : 1561 - 1571
  • [8] Kilbas A, 2006, Theory and Applications of Fractional Differential Equations, P204
  • [9] An Lq(Lp)-theory for the time fractional evolution equations with variable coefficients
    Kim, Ildoo
    Kim, Kyeong-Hun
    Lim, Sungbin
    [J]. ADVANCES IN MATHEMATICS, 2017, 306 : 123 - 176
  • [10] Some well-posed results on the time-fractional Rayleigh-Stokes problem with polynomial and gradient nonlinearities
    Nguyen Huy Tuan
    Nguyen Hoang Luc
    Tuan Anh Nguyen
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (01) : 500 - 514