Existence and regularity of solutions for semilinear fractional Rayleigh-Stokes equations

被引:2
作者
Jiang, Yiming [1 ]
Ren, Jingchuang [2 ]
Wei, Yawei [1 ]
机构
[1] LPMC Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 03期
基金
中国国家自然科学基金;
关键词
Existence; Regularity; Mild solution; Rayleigh-Stokes problem; Riemann-Liouville derivative; TIME;
D O I
10.1007/s00033-024-02251-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the semilinear Rayleigh-Stokes equation with the fractional derivative in time of order alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, which can be used to model anomalous diffusion in viscoelastic fluids. An operator family related to this problem is defined, and its regularity properties are investigated. We firstly give the concept of the mild solutions in terms of the operator family and then obtain the existence of global mild solutions by means of fixed point technique. Moreover, the existence and regularity of classical solutions are given.
引用
收藏
页数:23
相关论文
共 20 条
[1]   A Parabolic Problem with a Fractional Time Derivative [J].
Allen, Mark ;
Caffarelli, Luis ;
Vasseur, Alexis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (02) :603-630
[2]   An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid [J].
Bazhlekova, Emilia ;
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :1-31
[3]   Lp-estimates for time fractional parabolic equations with coefficients measurable in time [J].
Dong, Hongjie ;
Kim, Doyoon .
ADVANCES IN MATHEMATICS, 2019, 345 :289-345
[4]   The Rayleigh-Stokes-problem for a Maxwell fluid [J].
Fetecau, C ;
Zierep, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (06) :1086-1093
[5]   The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid [J].
Fetecau, Corina ;
Jamil, Muhammad ;
Fetecau, Constantin ;
Vieru, Dumitru .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (05) :921-933
[6]   Regularity of the solution for a final value problem for the Rayleigh-Stokes equation [J].
Hoang Luc Nguyen ;
Huy Tuan Nguyen ;
Zhou, Yong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) :3481-3495
[7]   Identifying initial condition of the Rayleigh-Stokes problem with random noise [J].
Hoang Luc Nguyen ;
Huy Tuan Nguyen ;
Mokhtar, Kirane ;
Xuan Thanh Duong Dang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) :1561-1571
[8]  
Kilbas A.A., 2006, Theory and Applications of Fractional Differential Equations, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[9]   An Lq(Lp)-theory for the time fractional evolution equations with variable coefficients [J].
Kim, Ildoo ;
Kim, Kyeong-Hun ;
Lim, Sungbin .
ADVANCES IN MATHEMATICS, 2017, 306 :123-176
[10]   Some well-posed results on the time-fractional Rayleigh-Stokes problem with polynomial and gradient nonlinearities [J].
Nguyen Huy Tuan ;
Nguyen Hoang Luc ;
Tuan Anh Nguyen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (01) :500-514