Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications

被引:17
作者
Dutta, Sourav [1 ,2 ]
Noh, Seungmin [1 ,2 ]
Gual, Roger Sanchis [3 ]
Chen, Xiangzhong [4 ]
Pane, Salvador [3 ]
Nelson, Bradley J. [3 ]
Choi, Hongsoo [1 ,2 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Robot & Mechatron Engn, Daegu 42988, South Korea
[2] DGIST, DGIS ETH Microrobot Res Ctr, Daegu 42988, South Korea
[3] Swiss Fed Inst Technol, Inst Robot & Intelligent Syst, Multiscale Robot Lab, CH-8092 Zurich, Switzerland
[4] Fudan Univ, Inst Optoelect, State Key Lab Photovolta Sci & Technol, Shanghai Frontiers Sci Res Base Intelligent Optoel, Shanghai 200433, Peoples R China
基金
新加坡国家研究基金会;
关键词
Magnesium; Zinc; Iron; Biodegradable microrobot; Biomedical; Environmental; SUPERPARAMAGNETIC IRON-OXIDE; SELF-PROPELLED MICROMOTORS; PROTON PUMP INHIBITORS; IN-VIVO; JANUS MICROMOTORS; DRUG-DELIVERY; MAGNESIUM ALLOYS; TEMPLATE ELECTROSYNTHESIS; MAGNETIC MICROROBOTS; HELICOBACTER-PYLORI;
D O I
10.1007/s40820-023-01259-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This review discusses the potential of degradable metallic micromotors for a variety of biomedical and environmental applications.The design principles, fabrication techniques and degradation mechanisms of degradable metallic micromotors are reviewed in detail.Challenges and future directions for the development of degradable metallic micromotors for real-life applications are presented. Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation. Metal-based degradable micromotor composed of magnesium (Mg), zinc (Zn), and iron (Fe) have promise due to their nontoxic fuel-free propulsion, favorable biocompatibility, and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media, efficient cargo delivery and favorable biocompatibility. A noteworthy number of degradable metal-based micromotors employ bubble propulsion, utilizing water as fuel to generate hydrogen bubbles. This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications. In addition, understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance. Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor. Here we review the design and recent advancements of metallic degradable micromotors. Furthermore, we describe the controlled degradation, efficient in vivo drug delivery, and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications. Moreover, we discuss micromotors' efficacy in detecting and destroying environmental pollutants. Finally, we address the limitations and future research directions of degradable metallic micromotors.
引用
收藏
页数:35
相关论文
共 231 条
[61]   Engineering of Self-Propelling Microbots and Microdevices Powered by Magnetic and Electric Fields [J].
Han, Koohee ;
Shields, C. Wyatt ;
Velev, Orlin D. .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (25)
[62]   Role of magnesium in genomic stability [J].
Hartwig, A .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2001, 475 (1-2) :113-121
[63]   In Vivo Study of Biodistribution and Urinary Excretion of Surface-Modified Silica Nanoparticles [J].
He, Xiaoxiao ;
Nie, Hailong ;
Wang, Kemin ;
Tan, Weihong ;
Wu, Xu ;
Zhang, Pengfei .
ANALYTICAL CHEMISTRY, 2008, 80 (24) :9597-9603
[64]   Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies [J].
Hermawan, Hendra ;
Purnama, Agung ;
Dube, Dominique ;
Couet, Jacques ;
Mantovani, Diego .
ACTA BIOMATERIALIA, 2010, 6 (05) :1852-1860
[65]   Biodegradable Gold Nanoclusters with Improved Excretion Due to pH-Triggered Hydrophobic-to-Hydrophilic Transition [J].
Higbee-Dempsey, Elizabeth M. ;
Amirshaghaghi, Ahmad ;
Case, Matthew J. ;
Bouche, Mathilde ;
Kim, Johoon ;
Cormode, David P. ;
Tsourkas, Andrew .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (17) :7783-7794
[66]   Risk of Adverse Outcomes Associated With Concomitant Use of Clopidogrel and Proton Pump Inhibitors Following Acute Coronary Syndrome [J].
Ho, P. Michael ;
Maddox, Thomas M. ;
Wang, Li ;
Fihn, Stephan D. ;
Jesse, Robert L. ;
Peterson, Eric D. ;
Rumsfeld, John S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2009, 301 (09) :937-944
[67]   Gastric Helicobacter pylori infection accelerates healing of reflux esophagitis during treatment with the proton pump inhibitor pantoprazole [J].
Holtmann, G ;
Cain, C ;
Malfertheiner, P .
GASTROENTEROLOGY, 1999, 117 (01) :11-16
[68]   Magnesium alloys as implant materials - Principles of property design for Mg-RE alloys [J].
Hort, N. ;
Huang, Y. ;
Fechner, D. ;
Stoermer, M. ;
Blawert, C. ;
Witte, F. ;
Vogt, C. ;
Druecker, H. ;
Willumeit, R. ;
Kainer, K. U. ;
Feyerabend, F. .
ACTA BIOMATERIALIA, 2010, 6 (05) :1714-1725
[69]   A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy [J].
Hou, Kexin ;
Zhang, Yandong ;
Bao, Meili ;
Xin, Chao ;
Wei, Zengyan ;
Lin, Guochang ;
Wang, Zhenyu .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) :3825-3837
[70]   A Sub-Nanostructural Transformable Nanozyme for Tumor Photocatalytic Therapy [J].
Hu, Xi ;
Wang, Nan ;
Guo, Xia ;
Liang, Zeyu ;
Sun, Heng ;
Liao, Hongwei ;
Xia, Fan ;
Guan, Yunan ;
Lee, Jiyoung ;
Ling, Daishun ;
Li, Fangyuan .
NANO-MICRO LETTERS, 2022, 14 (01)