Numerical analysis for optimal quadratic spline collocation method in two space dimensions with application to nonlinear time-fractional diffusion equation

被引:0
作者
Xiao Ye
Xiangcheng Zheng
Jun Liu
Yue Liu
机构
[1] China University of Petroleum (East China),College of Science
[2] Shandong University,School of Mathematics
来源
Advances in Computational Mathematics | 2024年 / 50卷
关键词
Nonlinear fractional diffusion equation; Optimal quadratic spline collocation method; Nonuniform ; 2-1; formula; Convergence analysis; Fast implementation; 65M12; 65M15; 65M70;
D O I
暂无
中图分类号
学科分类号
摘要
Optimal quadratic spline collocation (QSC) method has been widely used in various problems due to its high-order accuracy, while the corresponding numerical analysis is rarely investigated since, e.g., the perturbation terms result in the asymmetry of optimal QSC discretization. We present numerical analysis for the optimal QSC method in two space dimensions via discretizing a nonlinear time-fractional diffusion equation for demonstration. The L2-1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\sigma $$\end{document} formula on the graded mesh is used to account for the initial solution singularity, leading to an optimal QSC–L2-1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\sigma }$$\end{document} scheme where the nonlinear term is treated by the extrapolation. We provide the existence and uniqueness of the numerical solution, as well as the second-order temporal accuracy and fourth-order spatial accuracy with proper grading parameters. Furthermore, we consider the fast implementation based on the sum-of-exponentials technique to reduce the computational cost. Numerical experiments are performed to verify the theoretical analysis and the effectiveness of the proposed scheme.
引用
收藏
相关论文
共 81 条
  • [11] Ng KS(2020)Optimal Adv. Comput. Math. 46 63-A3591
  • [12] Chen H(2022) spatial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation SIAM J. Sci. Comput. 44 A3560-678
  • [13] Stynes M(2017)On geometric inverse problems in time-fractional subdiffusion Comput. Phys. 21 650-2155
  • [14] Diethelm K(2019)Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun Math. Comput. 88 2135-528
  • [15] Garrappa R(2022)Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions SIAM J. Numer. Anal. 60 503-1039
  • [16] Giusti A(2021)Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data Numer. Algorithms 86 1011-601
  • [17] Stynes M(2021)A second-order fast compact scheme with unequal time-steps for subdiffusion problems Comput. Phys. 30 567-237
  • [18] Diethelm K(2019)A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem, Commun SIAM J. Numer. Anal. 57 218-1133
  • [19] Ford NJ(2018)A discrete Grönwall inequality with application to numerical schemes for fractional reaction-subdiffusion problems SIAM J. Numer. Anal. 56 1112-25
  • [20] Eli B(2019)Sharp error estimate of nonuniform L1 formula for linear reaction-subdiffusion equations J. Sci. Comput. 80 1-174