Twisted Weyl groups of Lie groups and nonabelian cohomology

被引:0
作者
Jinpeng An
机构
[1] ETH Zurich,Department of Mathematics
来源
Geometriae Dedicata | 2007年 / 128卷
关键词
Lie group; Twisted Weyl group; Nonabelian cohomology; Twisted conjugate action; 20J06; 22E15; 57S15; 57S20;
D O I
暂无
中图分类号
学科分类号
摘要
For a cyclic group A and a connected Lie group G with an A-module structure (with the additional assumptions that G is compact and the A-module structure on G is 1-semisimple if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\cong{\mathbb{Z}}$$\end{document}), we define the twisted Weyl group W = W(G,A,T), which acts on T and H1(A,T), where T is a maximal compact torus of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_0^A$$\end{document} , the identity component of the group of invariants GA. We then prove that the natural map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\backslash H^1(A,T)\rightarrow H^1(A,G)$$\end{document} is a bijection, reducing the calculation of H1(A,G) to the calculation of the action of W on T. We also prove some properties of the twisted Weyl group W, one of which is that W is a finite group. A new proof of a known result concerning the ranks of groups of invariants with respect to automorphisms of a compact Lie group is also given.
引用
收藏
页码:167 / 176
页数:9
相关论文
共 50 条
  • [41] Discretization of compact semisimple Lie groups
    Hrivnak, J.
    Patera, J.
    GEOMETRIC METHODS IN PHYSICS, 2008, 1079 : 196 - 202
  • [42] Totally geodesic submanifolds in Lie groups
    Jianwei Zhou
    Acta Mathematica Hungarica, 2006, 111 : 29 - 41
  • [43] ON RIEMANN-POISSON LIE GROUPS
    Alioune, Brahim
    Boucetta, Mohamed
    Lessiad, Ahmed Sid'Ahmed
    ARCHIVUM MATHEMATICUM, 2020, 56 (04): : 225 - 247
  • [44] Nets of standard subspaces on Lie groups
    Neeb, Karl-Hermann
    Olafsson, Gestur
    ADVANCES IN MATHEMATICS, 2021, 384
  • [45] Generalized Bicomplex Numbers and Lie Groups
    Karakus, Siddika Ozkaldi
    Aksoyak, Ferdag Kahraman
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (04) : 943 - 963
  • [46] Higher order geodesics in Lie groups
    Tomasz Popiel
    Mathematics of Control, Signals, and Systems, 2007, 19 : 235 - 253
  • [47] Generalized Bicomplex Numbers and Lie Groups
    Sıddıka Özkaldı Karakuş
    Ferdag Kahraman Aksoyak
    Advances in Applied Clifford Algebras, 2015, 25 : 943 - 963
  • [48] Direct limits of regular Lie groups
    Gloeckner, Helge
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (01) : 74 - 81
  • [49] ON THE INTERIOR OF SUBSEMIGROUPS OF LIE-GROUPS
    HOFMANN, KH
    RUPPERT, WAF
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (01) : 169 - 179
  • [50] ON SUBSEMIGROUPS OF SEMISIMPLE LIE-GROUPS
    KELLYLYTH, D
    MCCRUDDEN, M
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1995, 105 (02): : 153 - 156