For a cyclic group A and a connected Lie group G with an A-module structure (with the additional assumptions that G is compact and the A-module structure on G is 1-semisimple if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A\cong{\mathbb{Z}}$$\end{document}), we define the twisted Weyl group W = W(G,A,T), which acts on T and H1(A,T), where T is a maximal compact torus of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G_0^A$$\end{document} , the identity component of the group of invariants GA. We then prove that the natural map \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W\backslash H^1(A,T)\rightarrow H^1(A,G)$$\end{document} is a bijection, reducing the calculation of H1(A,G) to the calculation of the action of W on T. We also prove some properties of the twisted Weyl group W, one of which is that W is a finite group. A new proof of a known result concerning the ranks of groups of invariants with respect to automorphisms of a compact Lie group is also given.