Twisted Weyl groups of Lie groups and nonabelian cohomology

被引:0
作者
Jinpeng An
机构
[1] ETH Zurich,Department of Mathematics
来源
Geometriae Dedicata | 2007年 / 128卷
关键词
Lie group; Twisted Weyl group; Nonabelian cohomology; Twisted conjugate action; 20J06; 22E15; 57S15; 57S20;
D O I
暂无
中图分类号
学科分类号
摘要
For a cyclic group A and a connected Lie group G with an A-module structure (with the additional assumptions that G is compact and the A-module structure on G is 1-semisimple if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\cong{\mathbb{Z}}$$\end{document}), we define the twisted Weyl group W = W(G,A,T), which acts on T and H1(A,T), where T is a maximal compact torus of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_0^A$$\end{document} , the identity component of the group of invariants GA. We then prove that the natural map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\backslash H^1(A,T)\rightarrow H^1(A,G)$$\end{document} is a bijection, reducing the calculation of H1(A,G) to the calculation of the action of W on T. We also prove some properties of the twisted Weyl group W, one of which is that W is a finite group. A new proof of a known result concerning the ranks of groups of invariants with respect to automorphisms of a compact Lie group is also given.
引用
收藏
页码:167 / 176
页数:9
相关论文
共 50 条