Weighted inequalities for real-analytic functions in ℝ2

被引:0
作者
Malabika Pramanik
机构
[1] University of Wisconsin-Madison,Department of Mathematics
来源
The Journal of Geometric Analysis | 2002年 / 12卷
关键词
42B10; 35S30; 41A60; harmonic analysis; weighted integrals; weighted inequalities; weights; real-analytic functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let ƒ and g be real-analytic functions near the origin in ℝ2. Given 1 < p < ∞, we obtain a characterization of the set of positive numbers ∈ and δ that ensures\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{{|g|^\varepsilon }}{{|f|^\delta }} \in A_p (K)$$ \end{document} for some small neighborhood K of the origin. A notion of stability is introduced in relation to Ap weights and a counterexample is presented to show that the two-dimensional weighted problem, unlike its analog in dimension one, is not stable.
引用
收藏
页码:265 / 288
页数:23
相关论文
共 8 条
  • [1] Karpushkin V.N.(1986)A theorem concerning uniform estimates of oscillatory integrals when the phase is a function of two variables J. Soviet Math. 35 2809-2826
  • [2] Karpushkin V.N.(1986)Uniform estimates of oscillatory integrals with parabolic or hyperbolic phases J. Soviet Math. 33 1159-1188
  • [3] Phong D.H.(1997)The Newton polyhedron and oscillatory integral operators Acta Math. 179 105-152
  • [4] Stein E.M.(1999)On the growth and stability of real-analytic functions Am. J. Math. 121 519-554
  • [5] Phong D.H.(1976)Newton polyhedron and estimation of oscillating integrals Funct. Anal. Appl. 18 175-196
  • [6] Stein E.M.(undefined)undefined undefined undefined undefined-undefined
  • [7] Sturm J.A.(undefined)undefined undefined undefined undefined-undefined
  • [8] Varchenko A.(undefined)undefined undefined undefined undefined-undefined