Hopf bifurcations in a predator-prey system of population allelopathy with a discrete delay and a distributed delay

被引:0
|
作者
Xinhui Wang
Haihong Liu
Chenglin Xu
机构
[1] Yunnan Normal University,Department of mathematics
来源
Nonlinear Dynamics | 2012年 / 69卷
关键词
Lotka–Volterra predator-prey system; Discrete delay; Distributed delay; Stability; Hopf bifurcation; Periodic solution;
D O I
暂无
中图分类号
学科分类号
摘要
A delayed Lotka–Volterra predator-prey system of population allelopathy with discrete delay and distributed maturation delay for the predator population described by an integral with a strong delay kernel is considered. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcations are demonstrated. Furthermore, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations. Finally, some numerical simulations are carried out for illustrating the theoretical results.
引用
收藏
页码:2155 / 2167
页数:12
相关论文
共 50 条