Higher rank Wilson loops in N = 2∗ super-Yang-Mills theory

被引:0
作者
Xinyi Chen-Lin
Konstantin Zarembo
机构
[1] Nordita,Department of Physics and Astronomy
[2] KTH Royal Institute of Technology and Stockholm University,undefined
[3] Uppsala University,undefined
[4] ITEP,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
Matrix Models; Wilson; ’t Hooft and Polyakov loops; AdS-CFT Correspondence; Strong Coupling Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
The N=2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}={2}^{\ast } $$\end{document} Super-Yang-Mills theory (SYM*) undergoes an infinite sequence of large-N quantum phase transitions. We compute expectation values of Wilson loops in k-symmetric and antisymmetric representations of the SU(N ) gauge group in this theory and show that the same phenomenon that causes the phase transitions at finite coupling leads to a non-analytic dependence of Wilson loops on k/N when the coupling is strictly infinite, thus making the higher-representation Wilson loops ideal holographic probes of the non-trivial phase structure of SYM*.
引用
收藏
相关论文
共 73 条
[1]  
Pestun V(2012)Localization of gauge theory on a four-sphere and supersymmetric Wilson loops Commun. Math. Phys. 313 71-undefined
[2]  
Witten E(1988)Topological quantum field theory Commun. Math. Phys. 117 353-undefined
[3]  
Pilch K(2001)N = 2 supersymmetric RG flows and the IIB dilaton Nucl. Phys. B 594 209-undefined
[4]  
Warner NP(2013)Rigorous test of non-conformal holography: Wilson loops in N = 2∗ theory JHEP 03 062-undefined
[5]  
Buchel A(2014)N = 2∗ super-Yang-Mills theory at strong coupling JHEP 11 057-undefined
[6]  
Russo JG(2014)Strong-coupling phases of planar N = 2∗ super-Yang-Mills theory Theor. Math. Phys. 181 1522-undefined
[7]  
Zarembo K(1978)Planar diagrams Commun. Math. Phys. 59 35-undefined
[8]  
Chen-Lin X(2014)Holography for N = 2∗ on S JHEP 07 001-undefined
[9]  
Gordon J(2013)Evidence for large-N phase transitions in N = 2∗ theory JHEP 04 065-undefined
[10]  
Zarembo K(2013)Massive N = 2 gauge theories at large-N JHEP 11 130-undefined