G-completeness and M-competeness in fuzzy metric spaces: A note on a common fixed point theorem

被引:0
作者
S. Kumar
D. Miheţ
机构
[1] CIET,Faculty of Mathematics and Computer Science
[2] NCERT,undefined
[3] West University of Timişoara,undefined
来源
Acta Mathematica Hungarica | 2010年 / 126卷
关键词
fuzzy metric space; common fixed point; -completeness; 54E70; Secondary 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In the recent paper of this journal [7], a common fixed point theorem in G-complete fuzzy metric spaces under the t-norm Min was proved. We show that this theorem actually holds in more general situations.
引用
收藏
页码:253 / 257
页数:4
相关论文
共 15 条
  • [1] George A.(1994)On some results in fuzzy metric space Fuzzy Sets and Systems 64 395-399
  • [2] Veermani P.(1983)Fixed points in fuzzy metric spaces Fuzzy Sets and Systems 27 385-389
  • [3] Grabiec M.(2002)On fixed point theorems in fuzzy metric spaces Fuzzy Sets and Systems 125 245-252
  • [4] Gregori V.(1996)Common fixed points for noncontinuous nonself mappings on nonmetric spaces Far East J. Math. Sci. 4 199-212
  • [5] Sapena A.(1975)Fuzzy metric and statistical metric spaces Kybernetika 11 326-334
  • [6] Jungck G.(2008)Common fixed point theorems for expansion mappings in various spaces Acta Math. Hungar. 118 9-28
  • [7] Kramosil I.(2005)On the existence and the uniqueness of fixed points of Sehgal contractions Fuzzy Sets and Systems 156 135-141
  • [8] Michalek J.(2008)Fuzzy Fuzzy Sets and Systems 159 739-744
  • [9] Kumar S.(1972)-contractive mappings in non-Archimedean fuzzy metric spaces Math. System Theory 6 97-102
  • [10] Miheţ D.(2003)Fixed points of contraction mappings on PM-spaces Fuzzy Sets and Systems 135 409-413