On the Impossibility of Cryptography with Tamperable Randomness

被引:0
作者
Per Austrin
Kai-Min Chung
Mohammad Mahmoody
Rafael Pass
Karn Seth
机构
[1] KTH Royal Institute of Technology,
[2] Academia Sinica,undefined
[3] University of Virginia,undefined
[4] Cornell Tech,undefined
[5] Google,undefined
来源
Algorithmica | 2017年 / 79卷
关键词
Tampering; Randomness; Encryption;
D O I
暂无
中图分类号
学科分类号
摘要
We initiate a study of the security of cryptographic primitives in the presence of efficient tampering attacks to the randomness of honest parties. More precisely, we consider p-tampering attackers that may efficiently tamper with each bit of the honest parties’ random tape with probability p, but have to do so in an “online” fashion. Our main result is a strong negative result: We show that any secure encryption scheme, bit commitment scheme, or zero-knowledge protocol can be “broken” with advantage Ω(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (p)$$\end{document} by a p-tampering attacker. The core of this result is a new algorithm for biasing the output of bounded-value functions, which may be of independent interest. We also show that this result cannot be extended to primitives such as signature schemes and identification protocols: assuming the existence of one-way functions, such primitives can be made resilient to [inline-graphic not available: see fulltext]-tampering attacks where n is the security parameter.
引用
收藏
页码:1052 / 1101
页数:49
相关论文
共 23 条
  • [1] Dachman-Soled D(2012)Securing circuits against constant-rate tampering IACR Cryptol. ePrint Arch. 2012 366-402
  • [2] Kalai YT(2011)Tamper-proof circuits: how to trade leakage for tamper-resilience ICALP 1 391-299
  • [3] Faust S(1984)Probabilistic encryption J. Comput. Syst. Sci. 28 270-32
  • [4] Pietrzak K(1994)Definitions and properties of zero-knowledge proof systems J. Cryptol. 7 1-1549
  • [5] Venturi D(2015)How to compute in the presence of leakage SIAM J. Comput. 44 1480-1396
  • [6] Goldwasser S(1999)A pseudorandom generator from any one-way function SIAM J. Comput. 28 1364-27
  • [7] Micali S(2004)Beyond stack smashing: recent advances in exploiting buffer overruns IEEE Secur. Priv. 2 20-126
  • [8] Goldreich O(1978)A method for obtaining digital signatures and public-key cryptosystems Commun. ACM 21 120-87
  • [9] Oren Y(1994)Subliminal channels; past and present ETT 5 15-undefined
  • [10] Goldwasser S(1986)Generating quasi-random sequences from semi-random sources J. Comput. Syst. Sci. 33 75-undefined