Gaussian Fluctuation for Superdiffusive Elephant Random Walks

被引:0
|
作者
Naoki Kubota
Masato Takei
机构
[1] Nihon University,College of Science and Technology
[2] Yokohama National University,Department of Applied Mathematics, Faculty of Engineering
来源
Journal of Statistical Physics | 2019年 / 177卷
关键词
Self-interacting random walks; Random walk with memory; Step reinforcement; Elephant random walk; Limit theorems; Asymptotic normality;
D O I
暂无
中图分类号
学科分类号
摘要
Elephant random walk is a kind of one-dimensional discrete-time random walk with infinite memory: For each step, with probability α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} the walker adopts one of his/her previous steps uniformly chosen at random, and otherwise he/she performs like a simple random walk (possibly with bias). It admits a phase transition from diffusive to superdiffusive behavior at the critical value αc=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _c=1/2$$\end{document}. For α∈(αc,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (\alpha _c, 1)$$\end{document}, there is a scaling factor an\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_n$$\end{document} of order nα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\alpha }$$\end{document} such that the position Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} of the walker at time n scaled by an\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_n$$\end{document} converges to a nondegenerate random variable W^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{W}}$$\end{document}, whose distribution is not Gaussian. Our main result shows that the fluctuation of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} around W^·an\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{W}} \cdot a_n$$\end{document} is still Gaussian. We also give a description of a phase transition induced by bias decaying polynomially in time.
引用
收藏
页码:1157 / 1171
页数:14
相关论文
共 50 条
  • [1] Gaussian Fluctuation for Superdiffusive Elephant Random Walks
    Kubota, Naoki
    Takei, Masato
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (06) : 1157 - 1171
  • [2] Non-Gaussian propagator for elephant random walks
    da Silva, M. A. A.
    Cressoni, J. C.
    Schuetz, Gunter M.
    Viswanathan, G. M.
    Trimper, Steffen
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [3] ELEPHANT RANDOM WALKS WITH DELAYS
    Gut, Allan
    Stadtmueller, Ulrich
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 67 (1-2): : 51 - 66
  • [4] Interacting elephant random walks
    Arita, Chikashi
    Ragoucy, Eric
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [5] Superdiffusive Dispersals Impart the Geometry of Underlying Random Walks
    Zaburdaev, V.
    Fouxon, I.
    Denisov, S.
    Barkai, E.
    PHYSICAL REVIEW LETTERS, 2016, 117 (27)
  • [6] Network navigation with non-Levy superdiffusive random walks
    Aced Fuentes, Emilio
    Santini, Simone
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 580
  • [7] Moments of the superdiffusive elephant random walk with general step distribution
    Kiss, Jozsef
    Veto, Balint
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [8] On dynamical Gaussian random walks
    Khoshnevisan, D
    Levin, DA
    Méndez-Hernández, PJ
    ANNALS OF PROBABILITY, 2005, 33 (04): : 1452 - 1478
  • [9] Fluctuation Theory for Markov Random Walks
    Gerold Alsmeyer
    Fabian Buckmann
    Journal of Theoretical Probability, 2018, 31 : 2266 - 2342
  • [10] Fluctuation Theory for Markov Random Walks
    Alsmeyer, Gerold
    Buckmann, Fabian
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (04) : 2266 - 2342