Gaussian Fluctuation for Superdiffusive Elephant Random Walks
被引:0
|
作者:
Naoki Kubota
论文数: 0引用数: 0
h-index: 0
机构:Nihon University,College of Science and Technology
Naoki Kubota
Masato Takei
论文数: 0引用数: 0
h-index: 0
机构:Nihon University,College of Science and Technology
Masato Takei
机构:
[1] Nihon University,College of Science and Technology
[2] Yokohama National University,Department of Applied Mathematics, Faculty of Engineering
来源:
Journal of Statistical Physics
|
2019年
/
177卷
关键词:
Self-interacting random walks;
Random walk with memory;
Step reinforcement;
Elephant random walk;
Limit theorems;
Asymptotic normality;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Elephant random walk is a kind of one-dimensional discrete-time random walk with infinite memory: For each step, with probability α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha $$\end{document} the walker adopts one of his/her previous steps uniformly chosen at random, and otherwise he/she performs like a simple random walk (possibly with bias). It admits a phase transition from diffusive to superdiffusive behavior at the critical value αc=1/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha _c=1/2$$\end{document}. For α∈(αc,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha \in (\alpha _c, 1)$$\end{document}, there is a scaling factor an\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a_n$$\end{document} of order nα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n^{\alpha }$$\end{document} such that the position Sn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_n$$\end{document} of the walker at time n scaled by an\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a_n$$\end{document} converges to a nondegenerate random variable W^\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widehat{W}}$$\end{document}, whose distribution is not Gaussian. Our main result shows that the fluctuation of Sn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_n$$\end{document} around W^·an\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widehat{W}} \cdot a_n$$\end{document} is still Gaussian. We also give a description of a phase transition induced by bias decaying polynomially in time.