Phase Separation for the Long Range One-dimensional Ising Model

被引:0
|
作者
Marzio Cassandro
Immacolata Merola
Pierre Picco
机构
[1] Gran Sasso Science Institute,Dipartimento di Matematica
[2] INFN Center for Advanced Studies,undefined
[3] Università di L’Aquila,undefined
[4] Aix-Marseille Universit,undefined
[5] CNRS,undefined
来源
Journal of Statistical Physics | 2017年 / 167卷
关键词
Ferromagnetic Ising systems; Long range interaction; Phase transition; Contours; Peierls estimates; Cluster expansion; Phase segregation; Primary 60K35; Secondary 82B20; 82B43;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the phase separation problem for the one-dimensional ferromagnetic Ising model with long–range two–body interaction, J(n)=n-2+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(n)=n^{-2+\alpha }$$\end{document} where n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {N}$$\end{document} denotes the distance of the two spins and α∈]0,α+[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \in ]0,\alpha _{+}[$$\end{document} with α+=(log3)/(log2)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _+=(\log 3)/(\log 2) -1$$\end{document}. We prove that given m∈]-1,+1[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in ]-1,+1[$$\end{document}, if the temperature is small enough, then typical configuration for the μ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^{+}$$\end{document} Gibbs measure conditionally to have a empirical magnetization of the order m are made of a single interval that occupy almost a proportion 12(1-mmβ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}(1-\frac{m}{m_\beta })$$\end{document} of the volume with the minus phase inside and the rest of the volume is the plus phase, here mβ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\beta }>0 $$\end{document} is the spontaneous magnetization.
引用
收藏
页码:351 / 382
页数:31
相关论文
共 50 条