Phase Separation for the Long Range One-dimensional Ising Model
被引:0
|
作者:
Marzio Cassandro
论文数: 0引用数: 0
h-index: 0
机构:Gran Sasso Science Institute,Dipartimento di Matematica
Marzio Cassandro
Immacolata Merola
论文数: 0引用数: 0
h-index: 0
机构:Gran Sasso Science Institute,Dipartimento di Matematica
Immacolata Merola
Pierre Picco
论文数: 0引用数: 0
h-index: 0
机构:Gran Sasso Science Institute,Dipartimento di Matematica
Pierre Picco
机构:
[1] Gran Sasso Science Institute,Dipartimento di Matematica
[2] INFN Center for Advanced Studies,undefined
[3] Università di L’Aquila,undefined
[4] Aix-Marseille Universit,undefined
[5] CNRS,undefined
来源:
Journal of Statistical Physics
|
2017年
/
167卷
关键词:
Ferromagnetic Ising systems;
Long range interaction;
Phase transition;
Contours;
Peierls estimates;
Cluster expansion;
Phase segregation;
Primary 60K35;
Secondary 82B20;
82B43;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the phase separation problem for the one-dimensional ferromagnetic Ising model with long–range two–body interaction, J(n)=n-2+α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J(n)=n^{-2+\alpha }$$\end{document} where n∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\in \mathbb {N}$$\end{document} denotes the distance of the two spins and α∈]0,α+[\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \alpha \in ]0,\alpha _{+}[$$\end{document} with α+=(log3)/(log2)-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha _+=(\log 3)/(\log 2) -1$$\end{document}. We prove that given m∈]-1,+1[\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\in ]-1,+1[$$\end{document}, if the temperature is small enough, then typical configuration for the μ+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu ^{+}$$\end{document} Gibbs measure conditionally to have a empirical magnetization of the order m are made of a single interval that occupy almost a proportion 12(1-mmβ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{1}{2}(1-\frac{m}{m_\beta })$$\end{document} of the volume with the minus phase inside and the rest of the volume is the plus phase, here mβ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m_{\beta }>0 $$\end{document} is the spontaneous magnetization.