Inhomogeneous microlocal propagation of singularities in Fourier Lebesgue spaces

被引:0
作者
Gianluca Garello
Alessandro Morando
机构
[1] Università di Torino,Dipartimento di Matematica
[2] Università di Brescia,DICATAM
来源
Journal of Pseudo-Differential Operators and Applications | 2018年 / 9卷
关键词
Microlocal analysis; Pseudodifferential operators; Fourier Lebesgue spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper some results of microlocal continuity for pseudodifferential operators whose symbols belong to weighted Fourier Lebesgue spaces are given. Inhomogeneous local and microlocal propagation of singularities of Fourier Lebesgue type are then studied, with applications to some classes of semilinear equations.
引用
收藏
页码:47 / 93
页数:46
相关论文
共 16 条
[1]  
Beals M(1975)A general calculus of pseudodifferential operators Duke Math. J. 42 1-42
[2]  
Bony JM(1981)Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires Ann. Sc. Ec. Norm. Sup. 14 161-205
[3]  
Garello G(1992)Inhomogeneous microlocal analysis for Rend. Sem. Mat. Univ. Polit. Torino 50 165-181
[4]  
Garello G(1999) and Comm. Appl. Anal. 3 563-574
[5]  
Garello G(2001) singularities Oper. Theory Adv. Appl. 126 133-138
[6]  
Garello G(2002)Generalized Sobolev algebras and regularity of solutions of multi-quasi-elliptic semilinear equations Math. Nachr. 239 62-79
[7]  
Garello G(2005)Pseudodifferential operators with symbols in weighted function spaces of quasi-subadditive type Integr. Equ. Oper. Theory 51 501-517
[8]  
Morando A(2012)Pseudodifferential operators with symbols in weighted Sobolev spaces and regularity for non linear partial differential equations Pliska Stud. Mat. Bulgar. 21 101-126
[9]  
Garello G(2016)-bounded pseudodifferential operators and regularity for multi-quasi-elliptic equations Math. Nachr. 289 1820-1837
[10]  
Morando A(1977) microlocal properties for multi-quasi-elliptic pseudodifferential operators Ann. Inst. Fourier Grenoble 27 79-123