Quantum Fourier transform in computational basis

被引:0
作者
S. S. Zhou
T. Loke
J. A. Izaac
J. B. Wang
机构
[1] The University of Western Australia,School of Physics
[2] Yale University,Department of Physics
来源
Quantum Information Processing | 2017年 / 16卷
关键词
Quantum algorithm; Quantum Fourier transform; Computational basis state; Controlled quantum gates;
D O I
暂无
中图分类号
学科分类号
摘要
The quantum Fourier transform, with exponential speed-up compared to the classical fast Fourier transform, has played an important role in quantum computation as a vital part of many quantum algorithms (most prominently, Shor’s factoring algorithm). However, situations arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for example in the implementation of control operations that depend on Fourier coefficients. In this paper, we detail a new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity 1-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 - \delta $$\end{document} and digit accuracy ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} for each Fourier coefficient. Its time complexity depends polynomially on log(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log (N)$$\end{document}, where N is the problem size, and linearly on 1/δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\delta $$\end{document} and 1/ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\epsilon $$\end{document}. We also discuss an application of potential practical importance, namely the simulation of circulant Hamiltonians.
引用
收藏
相关论文
共 73 条
[1]  
Shor P(1997)Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer SIAM J. Comput. 26 1484-74
[2]  
Deutsch D(1985)Quantum theory, the Church-Turing principle and the universal quantum computer Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 400 97-768
[3]  
Bergland G(1969)A guided tour of the fast Fourier transform IEEE Spectr. 6 41-581
[4]  
Brassard G(2002)Quantum amplitude amplification and estimation Contemp. Math. 305 53-369
[5]  
Hoyer P(2008)Quantum simulation of the single-particle Schrödinger equation Am. J. Phys. 76 657-682
[6]  
Mosca M(2008)Polynomial-time quantum algorithm for the simulation of chemical dynamics Proc. Natl. Acad. Sci. 105 18681-undefined
[7]  
Tapp A(2005)Eigenvalue estimation of differential operators with a quantum algorithm Phys. Rev. A 72 062318-undefined
[8]  
Benenti G(2003)Pattern recognition on a quantum computer Phys. Rev. A 67 062311-undefined
[9]  
Strini G(2006)Quantum algorithms for some hidden shift problems SIAM J. Comput. 36 763-undefined
[10]  
Kassal I(2005)Fast quantum algorithm for numerical gradient estimation Phys. Rev. Lett. 95 050501-undefined