Unsupervised machine learning identifies predictive progression markers of IPF

被引:0
|
作者
Jeanny Pan
Johannes Hofmanninger
Karl-Heinz Nenning
Florian Prayer
Sebastian Röhrich
Nicola Sverzellati
Venerino Poletti
Sara Tomassetti
Michael Weber
Helmut Prosch
Georg Langs
机构
[1] Medical University of Vienna,Computational Imaging Research Lab, Department of Biomedical Imaging and Image
[2] Medical University of Vienna,guided Therapy
[3] University of Parma,Department of Biomedical Imaging and Image
[4] Morgagni-Pierantoni Hospital,guided Therapy
[5] Aarhus University Hospital,Unit “Scienze Radiologiche”, Department of Medicine and Surgery (DiMeC)
来源
European Radiology | 2023年 / 33卷
关键词
Idiopathic pulmonary fibrosis; Unsupervised machine learning; Tomography, X-ray computed;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:925 / 935
页数:10
相关论文
共 50 条
  • [1] Unsupervised machine learning identifies predictive progression markers of IPF
    Pan, Jeanny
    Hofmanninger, Johannes
    Nenning, Karl-Heinz
    Prayer, Florian
    Roehrich, Sebastian
    Sverzellati, Nicola
    Poletti, Venerino
    Tomassetti, Sara
    Weber, Michael
    Prosch, Helmut
    Langs, Georg
    EUROPEAN RADIOLOGY, 2023, 33 (02) : 925 - 935
  • [2] Biomarkers of collagen formation are predictive of IPF progression and death
    Hoyer, Nils
    Jessen, Henrik
    Ronnow, Sarah
    Karsdal, Morten
    Leeming, Diana
    Sand, Jannie
    Shaker, Saher
    EUROPEAN RESPIRATORY JOURNAL, 2020, 56
  • [3] Using unsupervised machine learning to classify behavioral risk markers of bacterial vaginosis
    Rodriguez, Violeta J.
    Pan, Yue
    Salazar, Ana S.
    Nogueira, Nicholas Fonseca
    Raccamarich, Patricia
    Klatt, Nichole R.
    Jones, Deborah L.
    Alcaide, Maria L.
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2024, 309 (03) : 1053 - 1063
  • [4] Using unsupervised machine learning to classify behavioral risk markers of bacterial vaginosis
    Violeta J. Rodriguez
    Yue Pan
    Ana S. Salazar
    Nicholas Fonseca Nogueira
    Patricia Raccamarich
    Nichole R. Klatt
    Deborah L. Jones
    Maria L. Alcaide
    Archives of Gynecology and Obstetrics, 2024, 309 : 1053 - 1063
  • [5] Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers
    Haldar, Debanjan
    Kazerooni, Anahita Fathi
    Arif, Sherjeel
    Familiar, Ariana
    Madhogarhia, Rachel
    Khalili, Nastaran
    Bagheri, Sina
    Anderson, Hannah
    Shaikh, Ibraheem Salman
    Mahtabfar, Aria
    Kim, Meen Chul
    Tu, Wenxin
    Ware, Jefferey
    Vossough, Arastoo
    Davatzikos, Christos
    Storm, Phillip B.
    Resnick, Adam
    Nabavizadeh, Ali
    NEOPLASIA, 2023, 36
  • [6] Unsupervised Learning Identifies Computed Tomographic Measurements as Primary Drivers of Progression, Exacerbation, and Mortality in Chronic Obstructive Pulmonary Disease
    Yuan, Nancy F.
    Hasenstab, Kyle
    Retson, Tara
    Conrad, Douglas J.
    Lynch, David A.
    Hsiao, Albert
    ANNALS OF THE AMERICAN THORACIC SOCIETY, 2022, 19 (12) : 1993 - 2002
  • [7] Machine learning molecular classification in IPF: UIP or not UIP, that is the question
    Hart, Simon
    LANCET RESPIRATORY MEDICINE, 2019, 7 (06) : 466 - 467
  • [8] Clustering superconductors using unsupervised machine learning
    Roter, B.
    Ninkovic, N.
    Dordevic, S. V.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2022, 598
  • [9] Unsupervised machine learning identifies distinct molecular and phenotypic ALS subtypes in postmortem motor cortex and blood expression data
    Marriott, Heather
    Kabiljo, Renata
    Hunt, Guy
    Al Khleifat, Ahmad
    Troakes, Claire
    Koks, Sulev
    Dobson, Richard
    Schwab, Patrick
    Al-Chalabi, Ammar
    Iacoangeli, Alfredo
    HUMAN HEREDITY, 2023, 88 (SUPPL 1) : 55 - 55
  • [10] A framework for unsupervised learning and predictive maintenance in Industry 4.0
    Nota, G.
    Nota, F. D.
    Toro, A.
    Nastasia, M.
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING AND MANAGEMENT, 2024, 15 (04): : 304 - 319