On some Schrödinger and wave equations with time dependent potentials

被引:0
作者
Virginia Naibo
Atanas Stefanov
机构
[1] Rose-Hulman Institute of Technology,Department of Mathematics
[2] University of Kansas,Department of Mathematics
来源
Mathematische Annalen | 2006年 / 334卷
关键词
Schrödinger equation; Wave equation; Strichartz estimates; 35Q55; 35J10; 35L05;
D O I
暂无
中图分类号
学科分类号
摘要
The existence and uniqueness of solutions in the initial value problem for Schrödinger and wave equations in the presence of a (large) time dependent potential is studied. The usual Strichartz estimates for such linear evolutions are shown to hold true with optimal assumptions on the potentials. As a byproduct, one obtains a counterexample to the two dimensional double endpoint inhomogeneous Strichartz estimate.
引用
收藏
页码:325 / 338
页数:13
相关论文
共 21 条
[1]  
Constantin V.(2)Decay estimates for the wave equation with potential J. Amer. Math. Soc. 1 413-1369
[2]  
Georgiev N.(2003)Well-posedness and local smoothing of solutions of Schrödinger equations Comm. Partial Diff. Equations 28 1325-205
[3]  
Visciglia A.(1989)Spherically averaged end point Strichartz estimates for the two-dimensional Schrödinger equation, Comm Comm. Math. Phys. 123 535-1485
[4]  
Ginibre C.(1)undefined Comm. Math. Phys. 251 157-undefined
[5]  
Goldberg T.(2005)undefined Math. Res. Lett. 12 193-undefined
[6]  
Ionescu undefined(2)undefined J. Math. Soc. Japan 47 253-undefined
[7]  
Kenig undefined(1998)undefined Amer. J. Math. 120 955-undefined
[8]  
Jensen undefined(3)undefined Invent. Math. 134 489-undefined
[9]  
Keel undefined(1993)undefined Comm. Pure Appl. Math. 46 1221-undefined
[10]  
Kenig undefined(2)undefined Duke Math. J. 91 393-undefined