On the Exact Evaluation of the Face-Centred Cubic Lattice Green Function

被引:0
|
作者
G. S. Joyce
R. T. Delves
机构
[1] King’s College London,Physics Department
来源
Journal of Statistical Physics | 2011年 / 145卷
关键词
Green function; Face-centred Cubic Lattice;
D O I
暂无
中图分类号
学科分类号
摘要
The mathematical properties of the lattice Green function [graphic not available: see fulltext] are investigated, where w=w1+iw2 lies in a complex plane which is cut from w=−1 to w=3, and {ℓ1,ℓ2,ℓ3} is a set of integers with ℓ1+ℓ2+ℓ3 equal to an even integer. In particular, it is proved that G(2n,0,0;w), where n=0,1,2,…, is a solution of a fourth-order linear differential equation of the Fuchsian type with four regular singular points at w=−1,0,3 and ∞. It is also shown that G(2n,0,0;w) satisfies a five-term recurrence relation with respect to the integer variable n. The limiting function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{-}(2n,0,0;w_1)\equiv\lim_{\epsilon\rightarrow0+}G(2n,0,0;w_1-\mathrm{i}\epsilon) =G_{\mathrm{R}}(2n,0,0;w_1)+\mathrm{i}G_{\mathrm {I}}(2n,0,0;w_1) ,\nonumber $$\end{document} where w1∈(−1,3), is evaluated exactly in terms of 2F1 hypergeometric functions and the special cases G−(2n,0,0;0), G−(2n,0,0;1) and G(2n,0,0;3) are analysed using singular value theory. More generally, it is demonstrated that G(ℓ1,ℓ2,ℓ3;w) can be written in the form [graphic not available: see fulltext] where [inline-graphic not available: see fulltext] are rational functions of the variable ξ, K(k−) and E(k−) are complete elliptic integrals of the first and second kind, respectively, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{-}^2\equiv k_{-}^2(w)={1\over2}- {2\over w} \biggl(1+{1\over w} \biggr)^{-{3\over2}}- {1\over2} \biggl(1-{1\over w} \biggr ) \biggl(1+{1\over w} \biggr)^{-{3\over2}} \biggl(1-{3\over w} \biggr)^{1\over2}\nonumber $$\end{document} and the parameter ξ is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi\equiv\xi(w)= \biggl(1+\sqrt{1-{3\over w}} \,\biggr)^{-1} \biggl(-1+\sqrt{1+{1\over w}} \,\biggr) .\nonumber $$\end{document} This result is valid for all values of w which lie in the cut plane. The asymptotic behaviour of G−(2n,0,0;w1) and G(2n,0,0;w1) as n→∞ is also determined. In the final section of the paper a new 2F1 product form for the anisotropic face-centred cubic lattice Green function is given.
引用
收藏
页码:613 / 638
页数:25
相关论文
共 50 条
  • [1] On the Exact Evaluation of the Face-Centred Cubic Lattice Green Function
    Joyce, G. S.
    Delves, R. T.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (03) : 613 - 638
  • [2] Some exact results for the face-centred cubic lattice Green function
    Joyce, G. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (31)
  • [3] Exact evaluation of the Green functions for the anisotropic face-centred and simple cubic lattices
    Joyce, GS
    Delves, RT
    Zucker, IJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (32): : 8661 - 8672
  • [4] EXACT EVALUATION OF BODY CENTRED CUBIC LATTICE GREEN FUNCTION
    JOYCE, GS
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (12): : 1510 - +
  • [5] ORDERING OF A FACE-CENTRED CUBIC LATTICE
    DANIELIAN, A
    PHYSICA, 1963, 29 (01): : 67 - +
  • [6] Lattice Green functions: the seven-dimensional face-centred cubic lattice
    Zenine, N.
    Hassani, S.
    Maillard, J. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (03)
  • [7] A DISLOCATION REACTION IN THE FACE-CENTRED CUBIC LATTICE
    LOMER, WM
    PHILOSOPHICAL MAGAZINE, 1951, 42 (334): : 1327 - 1331
  • [8] Topological properties of face-centred cubic lattice
    Siddiqui, Muhammad Kamran
    Imran, Muhammad
    Saeed, Muhammad
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (01): : 195 - 207
  • [9] The Euler characteristic on the face-centred cubic lattice
    McAndrew, A
    Osborne, C
    PATTERN RECOGNITION LETTERS, 1997, 18 (03) : 229 - 237
  • [10] The writhe of polygons on the face-centred cubic lattice
    Garcia, M
    Ilangko, E
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (25): : 4593 - 4600