Perturbations of invariant subspaces of operators with Hilbert–Schmidt Hermitian components

被引:0
作者
Michael Gil’
机构
[1] Ben Gurion University of the Negev,Department of Mathematics
来源
Archiv der Mathematik | 2015年 / 105卷
关键词
Hilbert space; Linear operators; Invariant subspaces; Perturbations; Operators with Hilbert–Schmidt Hermitian components; 47A15; 47A55; 47B10;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with bounded non-selfadjoint operators having Hilbert–Schmidt imaginary Hermitian components. A perturbation bound for invariant subspaces is established. Our results can be considered as a particular generalization of the well-known Davis–Kahan sin θ-theorem for selfadjoint operators.
引用
收藏
页码:447 / 452
页数:5
相关论文
共 17 条
  • [1] Bhatia R.(1997)How and why to solve the operator equation London Math. Soc. 29 1-21
  • [2] Rosenthal P.(2008)− Acta Sci. Math. (Szeged) 74 719-727
  • [3] Chalendar I.(1969) =  Bull. Amer. Math. Soc. 75 863-868
  • [4] Partington J. R.(1970), Bull SIAM J. Numer. Anal. 7 1-46
  • [5] Davis C.(2012)Invariant subspaces for products of Bishop operators J. Funct. Anal. 263 1356-1377
  • [6] Kahan W. M.(2012)Some new bounds on perturbation of subspaces J. Math. Anal. Appl. 396 562-568
  • [7] Davis C.(2007)The rotation of eigenvectors by a perturbation III Rocky Mountain J. Math. 37 1187-1193
  • [8] Kahan W. M.(2006)Invariant subspaces for certain finite-rank perturbations of diagonal operators Arch. Math. (Basel) 87 564-571
  • [9] Fang Q.(2008)On invariant subspaces of operators in the class θ I. J. Reine Angew. Math. 614 1-52
  • [10] Xia J.(2007)Common invariant subspaces for finitely quasinilpotent collections of positive operators on a Banach space with a Schauder basis Integral Equations Operator Theory 58 433-446