Minimal Volume Product of Three Dimensional Convex Bodies with Various Discrete Symmetries

被引:0
作者
Hiroshi Iriyeh
Masataka Shibata
机构
[1] Ibaraki University,Graduate School of Science and Engineering
[2] Meijo University,Department of Mathematics
来源
Discrete & Computational Geometry | 2022年 / 68卷
关键词
Convex body; Volume product; Minimizing problem; Mahler conjecture; 52A40; 52A38;
D O I
暂无
中图分类号
学科分类号
摘要
We give the sharp lower bound of the volume product of three dimensional convex bodies which are invariant under a discrete subgroup of O(3) in several cases. We also characterize the convex bodies with the minimal volume product in each case. In particular, this provides a new partial result of the non-symmetric version of Mahler’s conjecture in the three dimensional case.
引用
收藏
页码:738 / 773
页数:35
相关论文
共 21 条
[1]  
Barthe F(2013)The volume product of convex bodies with many hyperplane symmetries Am. J. Math. 135 311-347
[2]  
Fradelizi M(2013)On the volume product of planar polar convex bodies—lower estimates with stability Studia Sci. Math. Hungar. 50 159-198
[3]  
Böröczky KJ(2012)An application of shadow systems to Mahler’s conjecture Discrete Comput. Geom. 48 721-734
[4]  
Makai E(2020)Symmetric Mahler’s conjecture for the volume product in the Duke Math. J. 169 1077-1134
[5]  
Meyer M(2011)-dimensional case Mathematika 57 121-134
[6]  
Reisner S(1938)Local minimality of the volume-product at the simplex Mathematica (Zutphen) B 7 118-127
[7]  
Fradelizi M(1939)Ein Minimalproblem für konvexe Polygone Časopis Pěst. Mat. Fys. 68 93-102
[8]  
Meyer M(1986)Ein Übertragungsprinzip für konvexe Körper Isr. J. Math. 55 317-326
[9]  
Zvavitch A(1991)Une caractérisation volumique de certains espaces normés de dimension finie Monatsh. Math. 112 297-301
[10]  
Iriyeh H(1990)Convex bodies with minimal volume product in Arch. Math. (Basel) 55 82-93