Precision matching of circular Wilson loops and strings in AdS5 × S5

被引:0
作者
Daniel Medina-Rincon
Arkady A. Tseytlin
Konstantin Zarembo
机构
[1] Nordita,Department of Physics and Astronomy
[2] KTH Royal Institute of Technology and Stockholm University,Blackett Laboratory
[3] Uppsala University,Hamilton Mathematical Institute
[4] Imperial College,undefined
[5] Trinity College,undefined
[6] Lebedev Institute,undefined
[7] ITEP,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
AdS-CFT Correspondence; Wilson, ’t Hooft and Polyakov loops;
D O I
暂无
中图分类号
学科分类号
摘要
Previous attempts to match the exact N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills expression for the expectation value of the 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}-BPS circular Wilson loop with the semiclassical AdS5 × S5 string theory prediction were not successful at the first subleading order. There was a missing prefactor ∼ λ−3/4 which could be attributed to the unknown normalization of the string path integral measure. Here we resolve this problem by computing the ratio of the string partition functions corresponding to the circular Wilson loop and the special 14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{4} $$\end{document} supersymmetric latitude Wilson loop. The fact that the latter has a trivial expectation value in the gauge theory allows us to relate the prefactor to the contribution of the three zero modes of the “transverse” fluctuation operator in the 5-sphere directions.
引用
收藏
相关论文
共 61 条
  • [41] Seminara D(undefined)undefined undefined undefined undefined-undefined
  • [42] Vescovi E(undefined)undefined undefined undefined undefined-undefined
  • [43] Faraggi A(undefined)undefined undefined undefined undefined-undefined
  • [44] Pando Zayas LA(undefined)undefined undefined undefined undefined-undefined
  • [45] Silva GA(undefined)undefined undefined undefined undefined-undefined
  • [46] Trancanelli D(undefined)undefined undefined undefined undefined-undefined
  • [47] Forini V(undefined)undefined undefined undefined undefined-undefined
  • [48] Tseytlin AA(undefined)undefined undefined undefined undefined-undefined
  • [49] Vescovi E(undefined)undefined undefined undefined undefined-undefined
  • [50] Cagnazzo A(undefined)undefined undefined undefined undefined-undefined