The global structure of traveling waves in spatially discrete dynamical systems

被引:214
作者
Mallet-Paret J. [1 ]
机构
[1] Division of Applied Mathematics, Brown University, Providence
基金
美国国家科学基金会;
关键词
Continuation methods; Heteroclinic orbits; Lattice differential equations; Lin's method; Mel'nikov method; Spatially discrete systems; Traveling waves;
D O I
10.1023/A:1021841618074
中图分类号
学科分类号
摘要
We obtain existence of traveling wave solutions for a class of spatially discrete systems, namely, lattice differential equations. Uniqueness of the wave speed c, and uniqueness of the solution with c ≠ 0, are also shown. More generally, the global structure of the set of all traveling wave solutions is shown to be a smooth manifold where c ≠ 0. Convergence results for solutions are obtained at the singular perturbation limit c → 0. © 1999 Plenum Publishing Corporation.
引用
收藏
页码:49 / 127
页数:78
相关论文
共 50 条
  • [31] Heteroclinic traveling waves of two-dimensional parabolic Allen-Cahn systems
    Oliver-Bonafoux, Ramon
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2025, 42 (01): : 209 - 280
  • [32] STABILITY OF TRAVELING WAVES FOR AUTOCATALYTIC REACTION SYSTEMS WITH STRONG DECAY
    Wu, Yaping
    Yan, Niannian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1601 - 1633
  • [33] Spreading speeds and traveling waves for abstract monostable evolution systems
    Liang, Xing
    Zhao, Xiao-Qiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (04) : 857 - 903
  • [34] Traveling waves in systems of oscillators on 2D-lattices
    Bak S.N.
    Pankov A.A.
    Journal of Mathematical Sciences, 2011, 174 (4) : 437 - 452
  • [35] Traveling waves of delayed reaction-diffusion systems with applications
    Yu, Zhi-Xian
    Yuan, Rong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2475 - 2488
  • [36] TRAVELLING CORNERS FOR SPATIALLY DISCRETE REACTION-DIFFUSION SYSTEMS
    Hupkes, H. J.
    Morelli, L.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (03) : 1609 - 1667
  • [37] Global dynamics and traveling waves for a diffusive SEIVS epidemic model with distributed delays
    Wang, Lianwen
    Wang, Xingyu
    Liu, Zhijun
    Wang, Yating
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [38] Global asymptotic stability of traveling waves in delayed reaction-diffusion equations
    Smith, HL
    Zhao, XQ
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (03) : 514 - 534
  • [39] GLOBAL STABILITY AND CONVERGENCE RATE OF TRAVELING WAVES FOR A NONLOCAL MODEL IN PERIODIC MEDIA
    Ouyang, Zigen
    Ou, Chunhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (03): : 993 - 1007
  • [40] Traveling waves in a spatially-distributed Wilson-Cowan model of cortex: From fronts to pulses
    Harris, Jeremy D.
    Ermentrout, Bard
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 369 : 30 - 46